Predicting Physician Burnout Using EHR Activity Logs

Hanyang Liu, PhD Student
Advisor: Chenyang Lu
Feb 29, 2024
Background
Physician Burnout

Burnout
-- “mental exhaustion caused by one’s professional life”

Consequence
- Substance Abuse
- Suicidal Ideation
- Medical error
- Poor care quality
- Increased turnover
- Decreased work hours
- > $4 billion /year

50% of physicians

70% of trainee physicians (residents, fellows)

COVID-19: pandemic further fueled the negative impact
Measurement and Intervention

Traditional Burnout Assessment

Physician → Survey → Burnout Assessment

Obtrusive, Slow and Expensive

Personalized Intervention

Requires monitoring & prediction system

No such system yet!
Approach I:
Feature Engineering
+ Standard ML
What are EHR Activity Logs?

Tracks **who** performed **what** at **what time**.

<table>
<thead>
<tr>
<th>Time</th>
<th>USER_ID</th>
<th>PAT_ID</th>
<th>Clinical Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td></td>
<td>Inpatient Patient Lists list loaded</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td></td>
<td>Inpatient system list accessed</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td>A</td>
<td>Storyboard viewed</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td>A</td>
<td>SmartSets activity selected</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td>A</td>
<td>Visit Navigator template loaded</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td>A</td>
<td>Problem List accessed</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td>A</td>
<td>Chart Review Encounters tab selected</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td>A</td>
<td>Chart Review Notes tab selected</td>
</tr>
<tr>
<td>12/21/19 7:21</td>
<td>M58530</td>
<td>A</td>
<td>Chart Review Note report viewed</td>
</tr>
<tr>
<td>12/21/19 7:22</td>
<td>M58530</td>
<td>A</td>
<td>Report with patient data viewed</td>
</tr>
</tbody>
</table>
Goal: A system that can assess the risk of burnout

Available in all hospitals & health centers

Electronic Health Records (EHR)

Activity Logs (digital footprint)

Feature Engineering

ML Model

Features
(e.g., EHR time, number of patients)

Burnout Outcome
Digital Phenotyping for Burnout

Burnout

- Workload
- Concentration, efficiency
- Pattern of EHR use
- Raw audit logs
Digital Phenotyping for Burnout

- **Workload features**
 - Patient load
 - Total EHR time
 - After-hours time
 - Inbox time
 - Chart review time
 - Note time
 - Order volume

- **Temporal features**
 Statistical features (i.e., mean, min, max, skew, kurtosis, energy, entropy, autocorrelation, slope):
 - Temporal pattern of EHR click activities
 - Temporal pattern of attention switching
Workload & Burnout

EHR: Electronic Health Records

Association with Burnout

Statistical analysis shows: **Higher workload links to higher risk of burnout.**

e.g., 25% burned-out vs 10% healthy physicians have spent > 40H/month on "after-hour" working

There exists predictive information in EHR activity logs
Study Design and Data Collection

Survey

- Sept / Oct / Nov
- Month 1
- Measure burnout (PFI)
- Measure EHR use / mo
 - Work hours
 - Patient load
 - Time spent on notes, chart review, inbox, etc.
 - Wrong-patient orders

EHR Audit Log

- Month 2
- Measure burnout (PFI)
- Measure EHR use / mo
- ...
- Month 6
- Measure burnout (PFI)
- Measure EHR use / mo

Feb / Mar / Apr
Machine Learning Evaluation Pipeline

1. 528 surveys sent to 88 participants
2. 112 surveys not completed
3. 416 surveys completed by 88 participants
4. 25 surveys excluded due to lack of audit log data
5. 391 surveys with associated 10,045,218 EHR audit log actions analyzed from 88 participants

Nested cross-validation (Grouped by participants)

- Average model performance across all 200 repeated evaluations

Outer 10-fold CV Loop

- Training Set (EHR data from 79-80 participants)
- Testing Set (EHR data from 8-9 participants)

Inner 10-fold CV Loop

- Train model using Training Set and evaluate on Testing Set

Normalization

- Best hyperparameters

10 evaluation score sets (AUROC & accuracy)

Inner 10-fold CV used to identify optimal hyper parameters: cross-validated random search over parameter settings to maximize average AUROC over 10 folds

Grouped Nested Cross-Validation

Lou et al. (2022) Journal of Biomedical Informatics.
Workload and temporal features weakly predict burnout

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Best Model</th>
<th>Mean Absolute Error</th>
<th>AUROC</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>Random Forest</td>
<td>0.602 (0.412, 0.826)</td>
<td>0.595 (0.355, 0.808)</td>
<td>0.567 (0.393, 0.742)</td>
</tr>
<tr>
<td>Temporal</td>
<td>Support Vector</td>
<td>0.596 (0.391, 0.826)</td>
<td>0.581 (0.343, 0.790)</td>
<td>0.556 (0.318, 0.756)</td>
</tr>
<tr>
<td>Workload + Temporal</td>
<td>Gradient Boosting</td>
<td>0.619 (0.438, 0.844)</td>
<td>0.583 (0.270, 0.831)</td>
<td>0.559 (0.386, 0.780)</td>
</tr>
</tbody>
</table>

Median PFI burnout score: 1.2 (IQR 0.7-1.7)
PFI score > 1.33 used to indicate burnout

Lou et al. (2022) Journal of Biomedical Informatics.
Baseline burnout is highly predictive of future burnout

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Best Model</th>
<th>Mean Absolute Error</th>
<th>AUROC</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>Random Forest</td>
<td>0.602 (0.412, 0.826)</td>
<td>0.595 (0.355, 0.808)</td>
<td>0.567 (0.393, 0.742)</td>
</tr>
<tr>
<td>Temporal</td>
<td>Support Vector Machine</td>
<td>0.596 (0.391, 0.826)</td>
<td>0.581 (0.343, 0.790)</td>
<td>0.556 (0.318, 0.756)</td>
</tr>
<tr>
<td>Workload + Temporal</td>
<td>Gradient Boosting Machine</td>
<td>0.619 (0.438, 0.844)</td>
<td>0.583 (0.270, 0.831)</td>
<td>0.559 (0.386, 0.780)</td>
</tr>
<tr>
<td>First Survey Score + Workload</td>
<td>Neural Network</td>
<td>0.423 (0.293, 0.567)</td>
<td>0.829 (0.607, 0.996)</td>
<td>0.781 (0.587, 0.936)</td>
</tr>
<tr>
<td>First Survey Score</td>
<td>Neural Network</td>
<td>0.432 (0.304, 0.570)</td>
<td>0.819 (0.551, 0.999)</td>
<td>0.765 (0.547, 0.952)</td>
</tr>
</tbody>
</table>

Lou et al. (2022) Journal of Biomedical Informatics.
Limitations

Study Design
- Small participant set (88 physicians x 6 months)
- Can’t capture the <50% “off-the-grid” non-EHR work
- Resident physicians may not be the right population to develop a stable model – not “steady state”
- Inter-individual variability in response to workload & workflow

Modeling
- Heavily require domain knowledge for feature engineering
- Inability to capture other factors that might also contribute to burnout
Approach II: End-to-end Deep Learning
Directly Using Raw Logs

Proposal: End-to-end Burnout Prediction

Goal: A system that can unobtrusively monitor and assess the risk of burnout in real time

Electronic Health Records (EHR)

Activity Logs (digital footprint)

Deep Neural Networks

Available in all hospitals & health centers

Running in Background (Unobtrusive)

50% 50%
Data Collection

Monthly surveys as burnout labels for model training

Data Collection

(till now, 88 intern physicians across 6 months)
Challenges & Proposed Model
Challenges to End-to-end Modeling

Challenge I
Content Understanding (Activity2Vec)

Challenge II
Large-scale Model Input

Challenge III
Limited Labels
I – Understanding Raw Activity Logs

Challenge I
Raw Content Understanding

Extract useful (data-driven) knowledge from raw activity logs.

- Over **1,900** unique kinds of actions
- Irregular intervals
- Need capture dynamics/temporality

No standard data encoding method for clinical activity logs.

![Diagram showing time representation and encoding with actions and time intervals](image-url)

- **Representation**
- **Encoding**
- **Action**
- **Time**
 - Time of work
 - Time of break
 - Work intensity
 - Task switch

- **Workflow**

No standard data encoding method for clinical activity logs.
Learning Activity Context

A: Note Review
B: Report Review

Semantically similar

Similar embedding (representation)

~1,900 Vectors

Embedding Lookup Table

Linear Projection

Neighboring Actions Target Action Neighboring Actions

“Skip-Gram Algorithm”
Learned Action Embedding

Identified Workflow Groups

Group 1:
Mobile EHR client

Group 2:
Preoperative assessment module

Group 3:
Inpatient pre-rounding

Group 4:
Outpatient setting
Learned Action Embedding

A Most similar actions to 'Results Review accessed'

<table>
<thead>
<tr>
<th>Action</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results Review exited</td>
<td>0.779</td>
</tr>
<tr>
<td>Report viewed - Radiology Results</td>
<td>0.634</td>
</tr>
<tr>
<td>Report viewed - Result Detail</td>
<td>0.626</td>
</tr>
<tr>
<td>Report viewed - Lab Result Template</td>
<td>0.606</td>
</tr>
<tr>
<td>Report viewed - IP Vitals</td>
<td>0.582</td>
</tr>
<tr>
<td>Chart Review Encounters tab selected</td>
<td>0.557</td>
</tr>
<tr>
<td>Report viewed - CV Echo</td>
<td>0.551</td>
</tr>
<tr>
<td>Order list changed</td>
<td>0.550</td>
</tr>
<tr>
<td>Report viewed for an order</td>
<td>0.537</td>
</tr>
<tr>
<td>Report viewed - IP Flowsheet</td>
<td>0.529</td>
</tr>
</tbody>
</table>

B

Average neighbor similarity vs. Frequency
Action-time Joint Embedding

Contextual **Action** Embedding
\[f_A(e_j) \]

Time **Interval** Embedding
\[f_I(t_{i+1} - t_i) \]

Time **Periodicity** Embedding
\[f_P(\sin(t_i)) \]

\(e_j \): one-hot encoding of the j-th unique action
\(f \): Function implemented by a neural network

\[g_i = f(e_j, t_i) \]
Action-time Joint Embedding

Action Embedding

$$a_i^{(k)} = W_a e_i^{(k)}$$

Time Interval Embedding

$$b_i^{(k)} = \tanh \left(W_b \cdot \log \left(t_i^{(k)} - t_{i-1}^{(k)} \right) + d_b \right)$$

Time Periodicity Embedding

$$c_i^{(k)}[j] = \begin{cases}
\omega j t_i^{(k)} + \varphi_j, & \text{if } j = 1 \\
\sin(\omega j t_i^{(k)} + \varphi_j), & \text{if } 1 < j \leq d
\end{cases}$$

Joint Embedding

$$g_i^{(k)} = \text{Concat}([a_i^{(k)}; b_i^{(k)}; c_i^{(k)}])$$
II – Modeling on Long Dependencies

Challenge II
Large-scale Model Input

- 20,000 ~ 90,000 actions per month*person
- 1,000 ~ 8,000 actions per shift*person
- Need Long dependencies

e.g., single-level RNNs
- “no-brainer” for sequential data
- Recurrent structure → slow to train
- Gradient issue → worse for long data sequence

Table: Statistics of Dataset

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td># total data points (actions)</td>
<td>15,767,634</td>
</tr>
<tr>
<td># types of actions</td>
<td>1,961</td>
</tr>
<tr>
<td># participants</td>
<td>88</td>
</tr>
<tr>
<td># total months of audit logs</td>
<td>754</td>
</tr>
<tr>
<td># months with eligible surveys (labels)</td>
<td>391</td>
</tr>
</tbody>
</table>

Model	Training Time (per epoch)
RNNs | > 5 h |
Temporal clustering of activities may contain useful information associated with burnout.
Hierarchical Sequence Modeling

High-level Encoder:
Daily measurement \rightarrow Monthly measurement

Low-level Encoder:
Activity embedding \rightarrow Daily measurement

f_{High}: RNNs (e.g., LSTM)

f_{Low}: Convolutional (e.g., TCN)

Raw data encoding:
Raw activity logs \rightarrow Activity embedding (action & time)

Hierarchical burnout Prediction based on Activity Logs (HiPAL)
Design Choice: Sequence Models

Recurrent Neural Networks (RNN)
(e.g., LSTM, GRU)

- Compute steps **recursively**
- Time-consuming
- Gradient issue for long sequences

Temporal Convolutional Networks (TCN)

- Compute steps **concurrently**
- Efficient for long sequences
- Behave like RNN, compute like CNN
Variations of TCN

(A) CausalNet

(B) ResTCN

(C) Fully Convolutional Networks (FCN)

\[
y = W \ast x + d \\
z = \text{BatchNorm}(y) \\
x' = \text{ReLU}(z)
\]
III – Utilizing Unlabeled Data

Challenge III
Limited Labels

Action Pretraining
- Embedding Lookup Table
- Linear Projection
- Action (one-hot)
- Neighboring Actions
- Target Action
- Neighboring Actions

SeqEncoder Pretraining
- h
- e
- t
- e
- t
- e
- t
- e
- t
- e
- t

HiPAL
- High-level Encoder
- Low-level Encoder
- LSTM
- Temporal Consistency Regularization

Target Action
Neighboring Actions
Linear Projection
SeqEncoder
Time-dependent Activity Embedding
Action Pretraining
Transfer
SeqEncoder Pretraining
Transfer
SeqDecoder
Monthly Measure
SeqEncoder
Daily (shift) Measure
MLP
Shift 1
Experiment
Prediction Performance

AUROC (higher → better):
Average true positive rate over all possible true negative rate

<table>
<thead>
<tr>
<th>Method</th>
<th>Training Time (per epoch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNNs</td>
<td>> 5 h</td>
</tr>
<tr>
<td>HiPAL</td>
<td>< 1 min</td>
</tr>
</tbody>
</table>

Training Efficiency

Size of training set - 6 million activity logs
GPU - Nvidia RTX 3090
Practical Effectiveness

AUROC = 0.6358

% True Positive Rate
% True Negative Rate

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Cost</th>
<th>Model Preference</th>
<th>% True Positive</th>
<th>% True Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>I EHR training</td>
<td>Low</td>
<td>Sensitive</td>
<td>80%</td>
<td>41.5%</td>
</tr>
<tr>
<td>II Days off</td>
<td>High</td>
<td>Specific</td>
<td>47.8%</td>
<td>80%</td>
</tr>
</tbody>
</table>
Training Efficiency

Single-level:
FCN, CausalNet and ResTCN

Hierarchical:
H-RNN: multi-level LSTM for video classification
HierGRU: replace f_{Low} as GRU

Ours:
HiPAL-f: $f_{Low} =$ FCN
HiPAL-c: $f_{Low} =$ CausalNet
HiPAL-r: $f_{Low} =$ ResTCN
($f_{High} =$ LSTM)

RNN-based:
GRU and LSTM (recurrent, slow)

GPU Training Time (per Epoch):

- GRU/LSTM: 314.7 s
- H-RNN: 304.2 s
- HierGRU: 12.4 s
- HiPAL-f: 6.3 s
- HiPAL-c: 49.6 s

HiPAL Variants
Temporal Consistency Regularization

Daily risk score: $\alpha^{(k)} = \text{Softmax}(W_R \cdot r^{(k)} + d_R)$

Daily loss: $\mathcal{L}_L = \frac{1}{T} \sum_{k=1}^{T} \text{CE}(\alpha^{(k)}, y)$

Monthly loss: $\mathcal{L}_H = \text{CE}(\gamma, y) = y \log y + (1 - y) \log(1 - y)$

Overall loss: $\mathcal{L} = \mathcal{L}_H + \lambda \mathcal{L}_L$
Interpretable Prediction

A month of actual shifts in a month

(Physician A) Consecutive Burnout

(Physician B) Unaffected

Can demonstrate how daily risk evolved over time and accumulated to final monthly risk of burnout.
Ablation Study

TC:
Temporal Consistency

Pretrain:
Action embedding pretraining (unsupervised)

Concat -> Add:
Replace the embedding aggregation function from concatenation to numerical addition

<table>
<thead>
<tr>
<th>VARIANT</th>
<th>AUROC</th>
<th>AUPRC</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Regularization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/ Different Embedding Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/ All</td>
<td>.6347 (.0181)</td>
<td>.5502 (.0191)</td>
<td>.6400 (.0218)</td>
</tr>
</tbody>
</table>
Ablation Study - Taildrop
Conclusion
Conclusion

• **End-to-end** deep learning-based burnout prediction framework
• Learn **contextual** representations directly from raw activities
• Capture natural **hierarchical** structure of clinician activity logs
• Model **long** dependencies on large-scale activity logs with **high efficiency**
• Facilitate fast burnout phenotyping and **individualized** intervention
Limitations

Study Design
• Small participant set (88 physicians x 6 months)
• Can’t capture the <50% “off-the-grid” non-EHR work
• Resident physicians may not be the right population to develop a stable model – not “steady state”
• Inter-individual variability in response to workload & workflow

Modeling
• Did not consider dependencies across months
• Lack of lower-level explainability
1. **Making the prediction actionable**
 - Outcome: Burnout as defined by PFI survey
 - Clinical action: Interventions are unclear (scheduling, training, resources)

2. **Potential biases in the outcome**
 - Outcome is subjective, has reasonable validity but is imperfect

3. **Training data quality**
 - Small dataset (~80 people, ~300 surveys), maybe wrong population, not representative
 - Audit logs are reproducible and automatically generated

4. **Practical predictors**
 - Audit logs are required by law but are data intensive

5. **Clinically meaningful measures of performance**
 - AUROC because clinical action was unclear
 - Didn’t measure calibration
Related Published Work

Predicting Physician Burnout using Clinical Activity Logs: Model Performance and Lessons Learned
Sunny S. Lou, Hanyang Liu, Benjamin Warner, Derek Harford, Chenyang Lu, Thomas Kannappallil
Journal of Biomedical Informatics, 2022. [pdf]

Characterizing the Microstructure of EHR Work Using Raw Audit Logs: An Unsupervised Action Embeddings Approach
Sunny S Lou, Hanyang Liu, Derek Harford, Chenyang Lu, Thomas Kannappalil
Journal of the American Medical Informatics Association (JAMIA), 2022. [pdf]

HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records
Hanyang Liu, Sunny S. Lou, Ben Warner, Derek Harford, Thomas Kannappallil, Chenyang Lu
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2022. [pdf] [code] [presentation]
This study was funded by the Fullgraf Foundation, the Washington University/BJC HealthCare Big Ideas Innovation Award, and NIH 5T32GM108539-07.