RespWatch: Measuring Respiratory Rate with a Commercial Smartwatch

Chenyang Lu
Fullgraf Professor of Computer Science & Engineering
Professor of Anesthesiology and Medicine
AIM Institute (AI and IoT for Medicine)
Need for Respiratory Rate Monitoring

- Respiratory Rate (RR) is closely related to health.
 - Detect sleep apnea, assess sleep quality
 - During sleep with little motion
 - Detect stress, opioid overdose, deterioration
 - Daily life with motion

- Traditional RR monitoring techniques are burdensome
 - Respiratory belt
 - Gas mask…

Not suitable for unobtrusive and long-term monitoring!

Respiratory belt
(source: https://sites.psu.edu/resnasdc/2013/06/13/smart-belt-a-low-cost-seizure-detection-device-rice-university/)

Gas mask
Smartwatches

- **Popularity:** more than 20 million sold in US, 2019

- **Embedded sensors**
 - Inertia Measurement Unit (IMU): measure motions
 - Photoplethysmogram (PPG): measure the heart rate

- **Enable long-term and unobtrusive monitoring**

Can we measure respiratory rate with smartwatches?
Limitations of the State of the Art

- Measure RR with smartwatch IMU sensors
 - Measure **micro vibration** of the respiration process
 - Assume limited motion, e.g., sleep, meditation
 - Vulnerable to **sensor noise** and **motion artifacts**
 - Micro vibrations can be the same order of sensor noise
 - Not suitable for RR monitoring in **daily life with motion and noise**

- Can we measure RR with smartwatch **photoplethysmogram (PPG)** in daily life?
Measuring RR with PPG

- PPG: an optical sensor for blood volume changes
 - Transmission mode vs. reflectance mode
 - Commonly used to measure the heart rate

- PPG waveform is modulated by respiration
 - Frequency (RIFV), Amplitude (RIAV), Intensity (RIIV)

![Diagram showing Fingertip PPG and Wrist PPG](image)

Pulse peaks in the PPG waveform are critical for extracting the modulations.
Challenges of Measuring RR with Watch PPG

- **Robustness** against noise
 - Significant noise and motion in daily life
 - Lower signal quality than finger PPG

- Trade-off between **accuracy** and **yield**
 - Require both yield and accuracy for real-time and long-term monitoring

- **Constrained** platform
 - Smartwatch has limited resources and battery
RespWatch Approaches

- **Signal processing**: efficient
- **Deep learning**: robust against noise
- **Hybrid**: combining the advantages of signal processing and deep learning

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Accuracy</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal processing estimator</td>
<td>High under moderate noise</td>
<td>Highly efficient</td>
</tr>
<tr>
<td>Deep learning estimator</td>
<td>Robust to significant noise</td>
<td>Not efficient</td>
</tr>
<tr>
<td>Hybrid estimator</td>
<td>High under moderate noise</td>
<td>Efficient</td>
</tr>
<tr>
<td></td>
<td>Robust to significant noise</td>
<td></td>
</tr>
</tbody>
</table>
Signal Processing Estimator

- **Preprocessing**
 - 60s window segments
 - Resample and band pass filter

- **Artifact Elimination & Pulse Peak Finding**
 - Fine-grained noise elimination with sliding sub-window
 - PPG pattern detector

- **Respiration Extraction**
 - Extract RR
 - Calculate the Estimation Quality Index
Forward-Backward (FB) Filter

- **Peak positions** of the PPG waveform is the key to respiration extraction

- Challenge: Find the pulse peaks in the presence of noise

- Forward-backward filter allows pulse peaks to be mapped back to unfiltered PPG
Artifact Elimination & Pulse Peak Finding

- Sliding sub-window: size of 10s, step of 2s
- Detect the PPG pattern in each sub-window after the FB filter

- Keep peaks in valid sub-windows
 - Fine-grained noise elimination

- Those peaks are used to
 - construct the respiration signals
 - find peaks to estimate RR

(a) A valid sub-window
(b) An invalid sub-window with artifacts. (The standard deviation of peak-to-valley distances is larger than 0.4.)
Estimation Quality Index (EQI)

- Assess the quality of the RR measurement
 - Tradeoff between accuracy and yield

- Existing approach uses motion as a proxy for measurement quality

- Estimation Quality Index (EQI)

\[
EQI_{RIXV,i} = \alpha \cdot \frac{STD(peak_intervals_{(i)})}{seq_length_{(i)}}
\]

- Does not rely on an external (e.g., motion) sensor
- Assess the impact of noise in general (not just motion)
- Assumptions: (1) respiration is rhythmic; (2) longer sequence \rightarrow more accurate
RespWatch Approaches

- **Signal processing**: efficient
- **Deep learning**: robust against noise
- **Hybrid**: combining the advantages of signal processing and deep learning

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Accuracy</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal processing estimator</td>
<td>High under moderate noise</td>
<td>Highly efficient</td>
</tr>
<tr>
<td>Deep learning estimator</td>
<td>Robust to significant noise</td>
<td>Not efficient</td>
</tr>
<tr>
<td>Hybrid estimator</td>
<td>High under moderate noise</td>
<td>Efficient</td>
</tr>
<tr>
<td></td>
<td>Robust to significant noise</td>
<td></td>
</tr>
</tbody>
</table>
RespWatch: Deep learning Estimator

- **Deep learning**
 - Requires no specialized signal processing
 - Is robust against noise

- **Preprocessing**
 - Resample the data
 - Bandpass filtering
 - Standardization

- **Deep Residual Network (ResNet)**
 - 2-d conv → 1-d conv
 - Classification → regression
RespWatch Approaches

- **Signal processing**: efficient
- **Deep learning**: robust against noise
- **Hybrid**: combining the advantages of signal processing and deep learning

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Accuracy</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal processing estimator</td>
<td>High under moderate noise</td>
<td>Highly efficient</td>
</tr>
<tr>
<td>Deep learning estimator</td>
<td>Robust to significant noise</td>
<td>Not efficient</td>
</tr>
<tr>
<td>Hybrid estimator</td>
<td>High under moderate noise</td>
<td>Efficient</td>
</tr>
<tr>
<td></td>
<td>Robust to significant noise</td>
<td></td>
</tr>
</tbody>
</table>
Hybrid Approach

- When to switch between the two basic estimators?
- Based on Estimation Quality Index (EQI)

Diagram:

- Raw PPG signals
- Signal processing estimator
- EQI < Thr?
- Yes: Output RespWatch_RIIV
- No: Deep learning estimator
- EQI ≥ Thr?
- No: Output RespWatch_DL

Combine complementary advantages
- EQI > threshold → signal processing
- EQI ≤ threshold → deep learning
Experiment

- **Fossil Gen4 Explorist HR** smartwatch (Wear OS)
 - Respiratory belt used to validate respiratory estimation
- **Experiment** in collaboration with the medical school
 - Multiple activities involved

We recruited **32 healthy subjects** (2 subjects’ data discarded)
- In total: \(1.5 \times 30h = 45h\) data collected.
Impacts of Activities

- Series of activities with different motion levels
 - Watch video, do math (working), speech prep., holding cold object, free time

- Speech period is excluded
- Red vertical lines marks intervals when signal processing failed

RespWatch_RIIV: signal processing
RespWatch_DL: deep learning

Deep Learning more accurate
Accuracy vs. Yield

$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_{ref,i}|$

- RespWatch_RIIV
- RespWatch_DL
- Auto_switch_EQI

Switch Point based on EQI
EQI=2.3
Yield=53%

Sort the data windows based on the EQI
Empirical Evaluation on Smartwatches

- Implementation on commercial smartwatches

<table>
<thead>
<tr>
<th>Device</th>
<th>Platform</th>
<th>RAM</th>
<th>System</th>
<th>PPG Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Gen4</td>
<td>Wear 2100¹</td>
<td>512MB</td>
<td>H</td>
<td>PAH8011² (200Hz)</td>
</tr>
<tr>
<td>Fossil Sport</td>
<td>Wear 3100³</td>
<td>512MB</td>
<td>H</td>
<td>PAH8011 (100Hz)</td>
</tr>
</tbody>
</table>

- Running time on the smartwatch

<table>
<thead>
<tr>
<th>Devices</th>
<th>Signal processing running time</th>
<th>Deep learning running time</th>
<th>Hybrid expected running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Gen4 (H)</td>
<td>44.895ms</td>
<td>6592.828ms</td>
<td>2879.811ms</td>
</tr>
<tr>
<td>Fossil sport (H)</td>
<td>38.064ms</td>
<td>7943.434ms</td>
<td>3453.740ms</td>
</tr>
</tbody>
</table>

- Signal processing is much more efficient than deep learning.
- Hybrid approach balances run time and robustness.
Conclusion

- **RespWatch** on commercial smartwatches for robust RR monitoring.

- Exploit the tradeoff between efficiency and robustness against noise.
 - **Signal processing:** efficient
 - **Deep learning:** robustness against noise.
 - **Hybrid:** efficient + robust

- Experiments show the feasibility of running RespWatch on smartwatches.