1. Here is a summary of the correct answers. The justifications are provided after the table:

<table>
<thead>
<tr>
<th>$T_1(n)$</th>
<th>$T_2(n)$</th>
<th>Is $T_1(n) = O(T_2(n))$?</th>
<th>Is $T_1(n) = \Omega(T_2(n))$?</th>
<th>Is $T_1(n) = \Theta(T_2(n))$?</th>
<th>Which is best?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a $25n \ln n + 5n$</td>
<td>$\frac{1}{2} n \log_2 n$</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>A2</td>
</tr>
<tr>
<td>b $\frac{1}{2} n^2 + n \log_2 n$</td>
<td>$5n \log_2 n$</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>A2</td>
</tr>
<tr>
<td>c $\sqrt{n} (\log_2 n)$</td>
<td>n</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>A1</td>
</tr>
<tr>
<td>d $2^{\log_2 n}$</td>
<td>$2n^2$</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>A1</td>
</tr>
<tr>
<td>e $n \sqrt{n}$</td>
<td>$n^{1.4}$</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>A2</td>
</tr>
</tbody>
</table>

(a) Recall that $\log_2 n = \frac{\ln n}{\ln 2}$. Also, note that $25n \ln n$ grows asymptotically faster than $5n$, so we know the $5n$ is a lower term that can be ignored with respect to the asymptotic notation. The $\lim_{n \to \infty} \frac{25n \ln n}{2n \log_2 n} = \lim_{n \to \infty} \left(\frac{25n \ln n}{2n \log_2 n} \right) = 50 \ln 2 \approx 35$. They grow at the same asymptotic growth rate, however A_2 is almost 35 times faster and hence is the preferred algorithm.

(b) Since n^2 is asymptotically faster growing that $n \log_2 n$, the dominant term in $T_1(n)$ is $\frac{1}{2} n^2$. The $\lim_{n \to \infty} \frac{1}{2} n^2 = \lim_{n \to \infty} \left(\frac{n^2}{10n \log_2 n} \right) = \lim_{n \to \infty} \left(\frac{n}{10 \log_2 n} \right) = \infty$ and hence T_1 is asymptotically faster growing and so A_2 is the preferred algorithm.

(c) $\lim_{n \to \infty} \frac{\sqrt{n} \log_2 n}{n} = \lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = 0$ and hence T_2 is asymptotically faster growing and so A_1 is the preferred algorithm.

(d) $2^{\log_2 n} = n$, and clearly $2n^2$ is asymptotically faster growing than n. (The $\lim_{n \to \infty} n/(2n^2) = \lim_{n \to \infty} 1/(2n) = 0$.) Hence $T_1(n)$ is asymptotically slower growing and thus A_1 is the preferred algorithm.

(e) Note that $n \sqrt{n} = n^{1.5}$. So $\lim_{n \to \infty} n^{1.5} = \infty$ and hence T_1 is asymptotically faster growing.

2. (a) The outer loop is executed n times and the inner loop is executed 10 times for each execution of the outer loop. So the loop body is executed $10n$ times. (As another way to think about it the number of times the loop body is executed is given by $\sum_{i=0}^{n-1} \sum_{j=1}^{10} 1 = \sum_{i=0}^{n-1} 10 = 10n$.) Thus the asymptotic time complexity is $\Theta(n)$.

(b) The first loop has asymptotic time complexity $\Theta(n)$. For the pair of nested loops, the loop body is executed $\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} 1 = \sum_{i=0}^{n-1} (n-i) = (n + (n-1) + \cdots + 1) = \frac{n(n+1)}{2} = n(n+1)/2$ times. (The first step above follows since there are $(n-1) - i + 1 = n - i$ values of j for each value of i.) So the second set of loops has asymptotic time complexity $\Theta(n^2)$. Thus the overall asymptotic time complexity of the entire program segment is $\Theta(n) + \Theta(n^2) = \Theta(n^2)$.

3. **Algorithm A**: $T(n) = T \left(\frac{3n}{4} \right) + 3n^2 + n$

We apply the master method. Here $a = 1$, $b = 4/3$ (and so $\log_b a = 0$). Since $3n^2 + n = \Theta(n^2)$, $\ell = 2$, $k = 0$. Thus $\ell > \log_b a$, so we have case 3 which gives that $T(n) = \Theta(n^2)$.
Algorithm B: \(T(n) = 4T(n/4) + 3 \)

We apply the master method. Here \(a = 4, b = 4 \) (and so \(\log_b a = 1 \)). Since \(3 = \Theta(1), \ell = 0, k = 0 \). Thus \(\ell < \log_b a \), so we have case 1 which gives that \(T(n) = \Theta(n) \).

Algorithm C: \(T(n) = 3T(n/2) + 3n \log_2 n \)

We apply the master method. Here \(a = 3, b = 2 \) (and so \(\log_b a = \log_2 3 \)). Since \(3n \log_2 n = \Theta(n \log n) \), \(\ell = 1, k = 1 \). Thus \(\ell < \log_b a \), so we have case 2 which gives that \(T(n) = \Theta(n \log_2 n^2) \).

Algorithm D: \(T(n) = 4T(n/2) + \Theta(n^2 \log_2 n) \)

We apply the master method. Here \(a = 4, b = 2 \) (and so \(\log_b a = 2 \)), \(\ell = 2, k = 1 \). Thus \(\ell = \log_b a \), so we have case 2 which gives that \(T(n) = \Theta(n^2 \log_2 n^2) \).

Algorithm E: \(T(n) = T(n-1) + 2n \)

For this recurrence the master method does not apply. Using the recurrence tree technique we find that there are recursive calls made for problem size of \(n, n-1, \ldots, 2 \) where \(2i \) statements are executed for the problem of size \(i \). Hence \(T(n) = \sum_{i=2}^{n} (2i) + T(1) = 2(n(n+1)/2 - 1) + c = n^2 + n + c - 2 = \Theta(n^2) \) where \(c \) is the number of statements executed when \(n = 1 \).

Which is best? Suppose that the above recurrences describe the exact time complexities of different algorithms to solve the same problem. Which algorithm is the fastest? Answer this as carefully as you can.

Algorithm B is asymptotically better than the others (and has no large constants hidden in the big-Oh notation) and so it is best.

4. (a) For the case where \(n = 1 \) clearly \(\Theta(1) \) work is performed, so \(T(1) = \Theta(1) \). For \(n \geq 2 \), there are 3 statements to compute the value of half and to allocate A1 and A2. The majority of the splitting cost is in executing the pair of nested loops. Notice that \(i \) takes on half different values. For each value of \(i \) there are just two values of \(j \). Thus the statement in the loop is executed \(2 \cdot \text{half} \) times. Since \(\text{half} = \lfloor n/2 \rfloor \), the asymptotic time complexity of these two nested loops is \(\Theta(n) \). After the nested loops there is one more statement. Thus, putting this all together the time spent splitting is asymptotically that of the nested loops (with an additional \(\Theta(n) \) steps outside the loop). Thus \(\Theta(n) \) time is spent splitting. The time spent combining is \(\Theta(1) \).

There are 2 recursive calls each on a problem of size \(n/2 \). Thus we obtain the recurrence \(T(n) = 2T(n/2) + \Theta(n) + \Theta(1) = 2T(n/2) + \Theta(n) \).

Now we can apply the master method. We have \(a = b = 2, \ell = 1, k = 0 \). Since \(\ell = \log_b a = 1 \), the solution is \(T(n) = \Theta(n \log n) \).

(b) For the case when \(n = 1 \) clearly \(\Theta(1) \) work is performed. For \(n \geq 2 \) notice that \(\Theta(n^2) \) time is spent in splitting into the subproblems. (The loop body is executed \((n/2)^2 = n^2/4 \) times).

There are 4 recursive calls on problems of size \(n/2 \). Finally, constant time is spent combining. So the total time spent in the splitting and combining (i.e. in everything besides the recursive calls) is \(\Theta(n) + \Theta(1) = \Theta(n) \) since \(n \) is asymptotically faster growing than \(\Theta(1) \) and thus dominates.
Hence, $T(1) = \Theta(1)$ and for $n \geq 2$, $T(n) = 4T(n/2) + \Theta(n^2)$ Now we can apply the master method. We have $a = 4$, $b = 2$, $\ell = 2$, and $k = 0$. Since $\ell = 2 = \log_b a$, the solution is $T(n) = \Theta(n^2 \log n)$.

5. Here is the divide-and-conquer algorithm to determine if all elements in the given array are equal. The initial call would be `allEqual(a, 0, a.length-1)`. (Yes, there is an easy iterative algorithm for this problem. The goal here is to provide practice with the design and analysis of divide-and-conquer algorithms.)

```java
boolean allEqual(int a[], int p, int r) {
    if (p == r)
        return true;
    if (A[p] != A[r])
        return false;
    int q = (p + r) / 2;
    return allEqual(a, p, q) && allEqual(a, q + 1, r);
}
```

$T(1) = 1$ since it just returns true. When $A[p]$ is not equal $A[r]$ then `allEqual` takes constant time. But in the worst case, it must compute q which takes constant time. Then, in the worst-case, it must solve 2 subproblems of size $n/2$. Finally it takes constant time to combine since a boolean conjunction is performed.

Hence, $T(1) = \Theta(1)$ and in the worst-case for $n \geq 2$, $T(n) = 2T(n/2) + \Theta(1)$ Now we can apply the master method. We have $a = 2$, $b = 2$, $\ell = 0$, and $k = 0$. Since $\ell = 0 < \log_b a$, the solution is $T(n) = \Theta(n)$.