When asked to give an algorithm, you are expected to give a clear description of the algorithm, prove it is correct, and analyze the time complexity of your algorithm.

Core Problems

1. (15 pts) Using BOTH a bottom-up approach and a memoization approach, implement the dynamic programming algorithm covered in class (and the text) for building an optimal binary search tree. You should output the valid search tree (in any reasonable form) along with the expected search time for the tree output. Test data will provided on the course web page. Along with submitting your code, please submit your output (the value for your solution and the tree). You may use any programming language.

2. (10 pts) For bit strings $X = x_1 \ldots x_m$, $Y = y_1 \ldots y_n$ and $Z = z_1 \ldots z_{m+n}$, we say that Z is an interleaving of X and Y if it can be obtained by interleaving the bits in X and Y in a way that maintains the left-to-right order of the bits in X and Y. For example if $X = 101$ and $Y = 01$ then $x_1x_2y_1x_3y_2 = 10011$ is an interleaving of X and Y, whereas 11010 is not. Give the most efficient algorithm you can to determine if Z is an interleaving of X and Y. Prove your algorithm is correct and analyze its time complexity as a function $n = |X|$ and $m = |Y|$.

3. (10 pts) Here we return to the ski rental problem. There are m pairs of skis, where the length of the ith pair of skis is s_i. There are n skiers who wish to rent skis, where the height of the ith skier is h_i. Ideally, each skier should obtain a pair of skis whose height matches his own height as closely as possible. Your goal is to assign skis to skiers so that the sum of the absolute differences of the heights of each skier and his skis is minimized.

 Give the most efficient algorithm you can (analyzed as a function of n and m) to optimally solve this problem when $m \geq n$ (i.e. there could be more skies than skiers). You may use any facts that were proven in Homework 1 without repeating the proof here.

4. (15 pts) You are traveling by a canoe down a river and there are n trading posts along the way. Before starting your journey, you are given for each $1 \leq i < j \leq n$, the fee $f_{i,j}$ for renting a canoe from post i to post j. These fees are arbitrary. For example it is possible that $f_{1,3} = 10$ and $f_{1,4} = 5$. You begin at trading post 1 and must end at trading post n (using rented canoes). Your goal is to minimize the rental cost.

5. (15 pts) Consider the problem of neatly printing a paragraph on a printer. The input text is a sequence of n words of lengths $\ell_1, \ell_2, \ldots, \ell_n$, measured in characters. We want to print this paragraph neatly on a number of lines that hold a maximum of M characters each. (Assume $\ell_i \leq M$ for all i.) Our criterion of “neatness” is as follows. If a given line contains words i through j and we leave exactly one space between words, the number of extra spaces at the end of the line is $M - j + i - \sum_{k=i}^{j} \ell_k$. We wish to minimize the sum, over all lines except the last, of the square of the number of extra space characters at the end of the lines.

 Give an $O(nM)$ dynamic-programming algorithm for this problem.
Advanced Problems, required for CS 539T (extra credit for CS 441T)

6. (10 pts) This problem (and variations of it) appear in speech-recognition applications. Consider a k-state Markov chain with states $1, \ldots, k$ and a $k \times k$ transition matrix a_{ij}, where a_{ij} is the probability of the chain making a transition from state i to state j in one step. (Here $a_{ij} + \cdots + a_{jk} = 1$ for all j.) When the $i \rightarrow j$ transition is made, the chain outputs a symbol s_{ij} which is drawn from some finite alphabet Σ. For example, a simple such Markov chain is shown (pictorially) below:

Consider a situation where the chain begins in state 1, makes n transitions which emit the symbols w_1, \ldots, w_n. This models the process of vocalizing a word; the Markov chain can be used to model the choice of word, the speed of speech, variations in pronunciation, etc.

Describe an efficient algorithm that, given a description of the Markov chain and the string w_1, \ldots, w_n, produces the most likely path through the Markov chain that could have produced this sequence of symbols. State the time complexity of your algorithm as a function of both k (the number of states) and n (the length of the output string). Note that the probability of a path through the chain is the product of the probabilities of the transitions taken.

7. (15 pts) The Euclidean traveling-salesman problem is the problem of determining the shortest closed tour that connects a given set of n points in the plane. (See text for more depth.) A simplification of this problem is obtained by considering bitonic tours which are tours that start at the leftmost point, go strictly left to right to the rightmost point, and then go strictly right to left back to the starting point. Describe an $O(n^2)$-time dynamic programming algorithm for determining an optimal bitonic tour. You may assume that no two points have the same x coordinate.

Hint: Scan left to right, maintaining optimal possibilities for the two parts of the tour.

8. (15 pts) You are given a sequence of n songs where the ith song has length ℓ_i minutes. You plan to release a series of five CDs (CD 1, \ldots, CD 5) with a selection of the n songs where each CD can hold m minutes of music. Your goal is to pick the maximum number of songs that can fit under the restrictions:

1. Songs must be recorded in the given order. That is, for $i < j$ if s_i and s_j are both in the collection selected by the solution then s_i must precede s_j (either by having s_i on an earlier CD in the series or have s_i before s_j on the same CD).

2. No song may be split across CDs.

Give the most efficient algorithm you can to find an optimal solution for this problem, prove the algorithm is correct and analyze the time complexity. Big Hint: First determine the minimum number of CDs needed to store any s songs. For example, 3.25 CDs needed means that 3 CDs have been completed (though may have some unused time at the end) and a 4th CD is being filled with $m/4$ minutes used so far.