This handout is intended as a supplement to Monday’s lecture. Assume that we have \(n \) residents \(R_1, R_2, \ldots, R_n \) and \(n \) medical school residency positions \(M_1, M_2, \ldots, M_n \) where \(n \) can be any positive integer. Each \(M_i \) gives a preference list that gives the residents in an order giving \(M_i \)'s preferences. Each \(R_j \) must be in each list exactly once. Likewise, each \(R_j \) gives a preference list that gives the medical school positions in order of \(R_j \)'s preferences where each \(M_i \) is in each list exactly once.

Let a matching be an assignment between residents and medical schools so that each resident is matched with a single position and each position is matched with a single resident. A matching is unstable if there exists a resident \(R_j \) and a position \(M_i \) that are not paired to each other would both prefer each other to their current pairing. Our goal is to creating a matching that is stable. Here is a proposed method to achieve this goal. In this we assume that initially everyone is unmatched.

```
Make-Stable-Matching
1    Repeat
2    Let \( M_i \) be any unmatched medical school
3    \( M_i \) proposes to first \( R_j \) on its preference list
4    If \( R_j \) is unmatched
5        Match \( M_i \) and \( R_j \)
6        Remove from \( R_j \)'s preference list all \( M \)'s ranked lower than \( M_i \)
7    Else if \( R_j \) is matched to \( M_k \) where \( M_i \) is preferred to \( M_k \)
8        Match \( M_i \) and \( R_j \)
9        Remove from \( R_j \)'s preference list all \( M \)'s ranked lower than \( M_i \)
10   Now \( M_k \) is unmatched
11   Else (\( R_j \) is matched with \( M_k \) where \( M_k \) is preferred to \( M_i \))
12      Do nothing (so \( M_i \) remains unmatched)
13   \( M_i \) removes \( R_j \) from its preference list
14   Until every \( M_i \) is matched
```

Our proof that this algorithm is correct uses the following three lemmas about operation of the Make-Stable-Matching.

Lemma 1 If \(M_i \)'s prefers \(R_\ell \) to \(R_j \) (i.e. \(R_\ell \) is before \(R_j \) in \(M_i \)'s preference list) then \(M_i \) will propose to \(R_\ell \) prior to proposing to \(R_j \).

Proof: This follows directly from line 3 since \(M_i \) always proposes to the first resident on its preference list. \(\square \)
Lemma 2 If R_j is unmatched then it accepts any proposal made.

Proof: From the condition on line 4, it immediately follows that an unmatched resident accepts any proposal.

Lemma 3 If R_j is matched to M_k, then R_j accepts a proposal from M_i if and only if R_j prefers M_i over M_k.

Proof: We first argue that if R_j accepts a proposal from M_i (breaking the match with M_k) then R_j prefers M_i to M_k. We use an indirect proof here. Namely, we argue that if R_j does not prefer M_i over M_k then then R_j does not accept a proposal from M_i. This follows directly from the condition on Line 11.

Next we argue that if R_j prefers M_i over M_k then then R_j will accept a proposal from M_i. This follows directly from the condition on line 7.

We now prove that our algorithm, Make-Stable-Matching satisfies the following two conditions: (1) it will terminate with a matching (i.e. each M and R is paired) and (2) the matching is stable.

Theorem 1 The algorithm Make-Stable-Matching will terminate with a matching.

Proof: The key observation used to argue that Make-Stable-Matching terminates is that each time through the repeat loop at least one item is removed from someone’s preference list. We now use a proof by contradiction to argue that a medical school position cannot reach the end of its preference list without being paired. Suppose not. Let M_i be a medical school position that is not paired after reaching the end of its preference list. Since each resident is paired with a single medical school position and the number of medical schools positions is the same as the number of residents, some resident, say R_j, must be unpaired. By Lemma 2, R_j has not received any proposals. This contradicts that M_i has reached the end of its list since its list included R_j. Thus, each medical school position (and hence each resident) will be paired.

Theorem 2 The matching output by Make-Stable-Matching is stable.

Proof: We use a proof by contradiction. Suppose the matching output is not stable. Then we have pairings $M_i \rightarrow R_j$ and $M_k \rightarrow R_\ell$ where M_i and R_ℓ would both prefer each other to their current pairs. That is, the original preference lists for M_i and R_ℓ have the following general structure:

$M_i : \cdots R_\ell \cdots R_j \cdots$

$R_\ell : \cdots M_i \cdots M_k \cdots$

For M_i and R_j to be paired by Make-Stable-Matching, M_i must have proposed to R_j. Hence, by Lemma 1, at some earlier point, M_i proposed to R_ℓ. Suppose that R_ℓ rejects the proposal from M_i. Then, by Lemma 3, R_ℓ is paired with a medical school position it prefers to M_i and hence prefers to M_k. And if R_ℓ accepts the proposal from M_i, then R_ℓ is paired with a medical school position, namely M_i, that it prefers to M_k. Since, in both cases, R_ℓ is paired with a medical school position it prefers over M_k, it follows from Lemma 3 that R_ℓ will reject a later proposal from M_k contradicting that R_ℓ and M_k are paired in the matching that was output. Hence, a non-stable matching could not occur.