Middleware Scheduling Optimization Techniques for Distributed Real-Time and Embedded Systems *

Christopher Gill and Ron Cytron
dcgill, cytron@cs.wustl.edu
Department of Computer Science
Washington University, St.Louis

Douglas Schmidt
schmidt@uci.edu
Electrical & Computer Engineering
University of California, Irvine

Abstract

Developers of mission-critical distributed real-time and embedded (DRE) systems face a fundamental tension between (1) the performance gains achievable with hand-crafted optimizations to systems built largely from scratch and (2) the development cost and cycle-time reductions offered by common off-the-shelf (COTS) middleware. This paper describes how the Kokyu portable middleware scheduling framework, which is built using standards-based COTS middleware and OS primitives, can be used both to (1) maintain the flexibility and reuse offered by COTS middleware and (2) provide opportunities for domain-specific optimizations that are needed to meet stringent real-time performance requirements.

Keywords: Real-Time Middleware, Quality of Service Issues, Dynamic Scheduling Algorithms and Analysis, Adaptive Resource Management, Distributed Systems.

1 Introduction

Next-generation mission-critical distributed real-time and embedded (DRE) systems, such as integrated avionics mission computing systems [1], teams of collaborating emergency rescue robots [2], and distributed real-time automobile management systems [3], must adapt swiftly to changing environmental conditions. Greater coordination allows elements at all levels to identify and respond effectively to transient opportunities and hazards. Achieving significant levels of coordination requires DRE systems with the ability to: (1) accommodate unplanned tasks and evolving task characteristics in a distributed environment with rapidly changing information and resource availability conditions; (2) trade performance of individual elements for system-level real-time performance objectives, and optimize real-time performance across heterogeneous criteria; (3) perform adaptive resource reallocations within firmly bounded time-scales.

These types of DRE systems have historically been developed largely from scratch, using handcrafted optimizations on each endsystem and network node to achieve the coordination and performance goals outlined above. Unfortunately, expectations of increasing scale and decreasing development cycles make it hard to sustain this development model in a cost-effective manner over long DRE system lifecycles. Solutions built instead using standards-based COTS middleware promises greater reuse of software architectures, patterns, frameworks, analysis techniques, and testing and certification results across entire families of systems.

Next-generation DRE systems also require explicit interfaces and mechanisms for key capabilities, such as fine-grain adaptive rescheduling, that are not available in today’s COTS middleware solutions, such as Real-Time CORBA 1.0 [4]. Emerging COTS middleware approaches, such as Dynamic Scheduling Real-Time CORBA [5] and the RTSJ [6], add some elements for implementing these capabilities, e.g., enhanced distributable threading models and real-time behavioral descriptors.

However, additional (and unified) higher-level approaches and services are still required to realize the full real-time performance benefits achievable with closer integration of scheduling mechanisms in middleware. Middleware is uniquely suited to address both (1) application-specific constraints such as whether or not operation rates are known in advance, and (2) optimized integration of common mechanisms to support flexible trade-offs within a common reusable infrastructure. Neither lower layers such as operating systems and network protocol stacks, nor higher layers such as domain-specific libraries or applications themselves, are appropriate contexts in which to combine these issues. Rather, middleware serves to mediate the higher and lower level concerns and can achieve improvements in both flexibility and performance through its appropriate interactions upward and downward in the overall system architecture.

To achieve both (1) reuse and flexibility across families of systems and (2) optimized real-time performance in DRE systems, this paper describes the following enhancements to current real-time middleware scheduling approaches: (1) hybridizing static and dynamic scheduling techniques to optimize run-time performance and relieve requirements for a priori knowledge of exact resource allocations and the order of transitions between allocations; (2) support for variable period tasks, to exploit degrees of freedom in performance of individual elements to achieve system-wide real-time proper-

* This work was funded in part by Boeing and DARPA ITO.
ties; (3) flexible policies and integrated mechanisms for selecting periods and determining execution eligibility, to apply this approach effectively across arbitrary operation characteristics, while achieving rapid local adaptation to run-time variations in system requirements and resource availability.

The remainder of this paper is structured as follows: Section 2 gives an overview of (1) the target system for our optimizations: a research DRE avionics mission computing platform and (2) the Kokyu scheduling framework; Section 3 describes optimizations for DRE target system performance under steady-state and adaptive conditions, and outlines extensions to our framework to support those optimizations; Section 4 surveys related work and describes how our work extends the state-of-the-art in middleware scheduling; and Section 5 offers concluding remarks and describes our future work on scheduling middleware for DRE systems.

2 Overview of Target Platform and Kokyu Framework Infrastructure

This section describes key features of the platform upon which our work is based and the Kokyu scheduling and dispatching infrastructure within which we perform optimizations to that platform. Section 2.1 identifies the expected number and characteristics of schedulable tasks within the target platform itself. Section 2.2 describes primitive elements of Kokyu scheduling framework, focusing on how target platform tasks are mapped to the dispatching elements of this framework.

2.1 An Overview of the Target Platform

Figure 1 illustrates the architecture of the OO avionics mission computing platform [7] targeted by the scheduling optimizations we present in this paper. This platform was developed and deployed using OO middleware components and services based on CORBA [8]. Key characteristics of the target platform that shape our middleware-based optimization approach are described below. These characteristics are shared by many other DRE systems, as well.

Operations and Tasks: Depending on the extent to which a specific application composes multiple operations within a single schedulable task, the number of schedulable tasks is on the order of 50-100. Some operations, such as computing the first leg of a navigation route, are mandatory and must finish before their deadlines. Other operations, such as computing subsequent legs of the route, are optional.

The model that underlies our target platform differs somewhat from the model in [9]. In their model each operation may have a mandatory part followed by an optional part. A similar effect can be achieved in our approach by making an optional operation’s task depend on a mandatory one’s task.

Variable Periods: Each task has a (possibly unary) harmonic set of discrete rates at which it can run, and the union of all these sets of rates is also harmonic. In our current research, rate reallocations are controlled by a Real-Time Adaptive Resource Manager (RT-ARM) [10]. RT-ARM is a middleware service developed by Honeywell that adapts the rates of tasks according to changing environmental conditions [11].

In our previous research [1, 11], we specified that a task would have the same execution time across all rates. Our current research [12], however, has revealed uses for variable execution times across available rates. Most notably, we use variable execution times to provide finer granularity decomposition for execution of optional operations.

Dependencies: The tasks may have precedence dependencies, resulting in a directed acyclic graph (DAG) over all operations that is established during or before application initialization. For example, an operation with a mandatory part and an optional part can be modeled in our approach with separate tasks, a mandatory one for the mandatory part and an optional one for the optional part, with a dependency of the optional operation’s task on the mandatory one’s task.

Tasks may be enabled or disabled at run-time by the application or a middleware resource manager, such as the RT-ARM. The application or a middleware resource manager may also enable and disable dependencies independently, subject to the constraint that an edge in the dependency DAG is treated as enabled at any given time if and only if it is enabled and connects two enabled tasks.

1Koky is a Japanese word meaning literally breath, but also with implications of timing and coordination.
2.2 An Overview of Kokyu

Kokyu is a portable middleware scheduling framework designed to provide flexible scheduling and dispatching services within the context of higher-level middleware, such as The ACE ORB [13] (TAO). As shown in white in Figure 2, Kokyu currently provides real-time scheduling and dispatching services for TAO’s real-time CORBA Event Service [7] accurately and in combination, as we describe in Section 3.

2.2.1 Kokyu’s Scheduling Infrastructure

Our earlier work on Kokyu’s scheduling infrastructure [14] evolved into a light-weight common interface and a set of richer pluggable strategies that encapsulate details of both scheduling data structures and heuristics. Each scheduling strategy contains algorithms and data structures used to (1) select rates of operations and (2) assign operations to the dispatching priority lanes described below.

For example, if an application only had information about the periodicity of tasks and did not know in advance what periods it would need to handle, it could plug in a strategy that used comparison sorting to order tasks for priority assignment according to rate monotonic scheduling [15] (RMS). However, an application that knew all possible values for both periodicity and criticality could use a form of radix sorting to order operations for priority assignment according to RMS+LLF [9].

Supporting alternative data structures for different degrees of information about the operations to be scheduled allows use-case-specific optimizations to the timeliness of adaptive re-scheduling. Section 3.3 considers these issues in detail.

2.2.2 Kokyu’s Dispatching Infrastructure

The right side of Figure 3 shows the essential features of Kokyu’s flexible task dispatching infrastructure. Key features of the dispatching infrastructure that are essential to performing our optimizations are as follows:

 Dispatching queues: Each task is assigned by our strategized scheduling service [14] to a specific dispatching queue, each of which has an associated queue number, a queuing discipline, and a unique operating-system-specific priority for its single associated dispatching thread.

 Dispatching threads: Operating-system thread priorities decrease with increasing queue number, so that the i^{th} queue is served by the highest priority thread. Each dispatching thread removes the task from the head of its queue and runs its entry point function to completion before retrieving the next task to dispatch. As described in Section 3.2, adapters can be applied to operations to intercept and possibly short-circuit the entry-point upcall. In general, however, the outermost operation entry point must complete on each dispatch.

 Queueing disciplines: Dispatching thread priorities determine which queue is active at any given time: the highest pri-
ority queue with a task to dispatch is always active, preempting tasks in lower priority queues. In addition, each queue may have a distinct discipline for determining which of its enqueued tasks has the highest eligibility, and must ensure the highest is at the head of the queue at the point when one is to be dequeued.

This paper discusses three disciplines: static, deadline, and laxity. Static tasks are ordered by a static subpriority value, resulting in a FIFO ordering if all static subpriorities are made the same; static queues at different priority levels can be used to implement an RMS scheduling strategy. Deadline tasks are ordered by time to deadline; a single deadline queue can be used to implement the earliest deadline first [15] (EDF) scheduling strategy. Finally, laxity tasks are ordered by slack time, or laxity – the time to deadline minus the execution time; a single laxity queue can be used to implement the minimum laxity first [16] (MLF) scheduling strategy; laxity queues at different priority levels can be used to implement the maximum urgency first [16] (MUF) scheduling strategy. Any discipline for which a maximal eligibility may be selected can be employed to manage a given dispatching queue in this approach. Scheduling strategies can be constructed from one or more queues of each discipline alone, or combinations of queues with different disciplines can be used, as in [9].

3 Middleware Scheduling Optimizations

Careful optimization of middleware is needed to meet the goals of mission-critical DRE systems described in Section 1. We now present several key optimizations that we have applied to realistic avionics mission computing applications in the target platform environment described in Section 2.1.

3.1 Overview of System Modes

A mode is a Boolean function on the states of a system’s constituent configuration items. For example, “the aircraft is engaged with ground threats” is a mode, and “all sensors are in their operational states” is a mode.

The value of a mode can change abruptly. For example, the failure of a component can affect modes. In DRE systems the time allotted to respond to mode changes may be very short. In fact, this requirement is one of the key technical differences between mission-critical DRE applications and mainstream commercial business applications.

For this paper, we define a mode partition as an equivalence partition over the set of possible states of the system. Our middleware scheduling optimizations focus on two high-level mode partitions—steady-state and adaptive—of the target avionics mission computing platform described in Section 2. As illustrated in Figure 4, the steady-state mode partition contains any steady behavioral state, with a particular rate and priority assigned to each operation while in that state.

Figure 4: System Mode Partitions

The adaptive mode partition consists of the sequence of transitions between steady behavioral states, in which a new round of rate selection and priority assignment must be performed. Section 3.2 describes optimizations to the steady-state mode partition, and Section 3.3 describes optimizations to the adaptive mode partition. In our current research, the RT-ARM described in Section 2 is invoked from the steady state mode partition, but may transition the system into the adaptive mode partition during its execution.

3.2 Steady-State Optimizations

Existing research [9, 17] on adaptive scheduling of mandatory and optional operations has largely focused on properties that can be specified a priori, such as the computational complexity of the scheduling algorithm, the error function for optional tasks during overload, and the value to the application of completing various stages of task execution. While these approaches are valuable for establishing the essential theory of building adaptive DRE systems, we believe an empirical approach is also useful to guide design decisions and reveal opportunities for application-specific and domain-specific optimizations in middleware.

For example, hybridization of the rate monotonic scheduling (RMS), earliest deadline first (EDF), and minimum laxity first (MLF) scheduling techniques has been proposed to isolate mandatory tasks from optional tasks, and optimize the execution behavior of those tasks [9, 16]. Clearly, a variety of scheduling approaches and hybrid combinations of approaches are possible—and often desirable—for scheduling various types of DRE applications.
However, choosing the approach that is best suited to a particular application or application domain requires attention not only to the characteristics and requirements of the application, but of the platforms and middleware on which it is hosted. Here, we focus primarily on the empirically measured low-level characteristics of the dispatching infrastructure on which the scheduling policies will be enforced in our flexible scheduling framework. Since the RT-ARM described in Sections 2 and 3.3 must manage adaptive transitions whenever a change in application state requires a reallocation of rates, it must operate at a higher priority than the optional operations. However, if its operations cannot be feasibly scheduled with the mandatory operations, some of them must be assigned to an intermediate priority partition between the optional and mandatory operations. To meet the three system objectives described in Section 1, we describe four types of performance optimizations for this scenario, illustrated in Figure 5:

A. Dynamic scheduling: If we cannot feasibly schedule all of the RT-ARM operations with the mandatory operations, or the combination produces a barely feasible schedule and we lack confidence in the precision of the advertised execution times, we might trade some measure of overhead for stricter partitioning between the mandatory and RT-ARM operations, and schedule the RT-ARM operations in an intermediate priority queue using a deadline- or laxity-based discipline. This optimization allows the target system some flexibility to meet our goal to accommodate unplanned tasks and unexpected variations in operation characteristics (i.e., some jitter in the execution times), especially of the RT-ARM or optional operations.

B. Dynamic cancellation: If we cannot feasibly schedule all of the operations within a priority partition, we must consider whether to allow futile dispatches of operations, even though we know they will miss their deadlines. Reducing the number of futile dispatches and wasted CPU time may improve the performance of other operations and increase either the number of made deadlines, the amount of work completed before deadlines, or both. This optimization can help meet our goal to trade performance of individual elements for overall performance objectives, e.g., maximizing the availability of the CPU for operations that can meet their deadlines.

C. Merged scheduling: If we can feasibly and confidently schedule the RT-ARM operations and mandatory operations together using RMS, then merging the RT-ARM operations upward into the mandatory partition serves to reduce (1) the number of threads needed to dispatch operations and (2) the expected queuing overhead for RT-ARM operations. This optimization can help with our goal of improving real-time performance (i.e., reducing overhead) across heterogeneous criteria (i.e., criticality and rate).

D. Divided scheduling: If we can partition the RT-ARM operations themselves into mandatory and optional segments (e.g., to consider different ranges of available rates) and the RT-ARM mandatory segment is feasible with the other mandatory operations, then we can merge it upward into the RMS partition, reducing overhead for at least the mandatory part of RT-ARM. By ensuring that the critical status assessment portion of the RT-ARM is feasibly scheduled, and thus avoiding consistency recovery costs, this optimization can help meet our goal of performing adaptive resource reallocations within firmly bounded time-scales. This optimization can also help meet our goal to improve real-time performance across het-
erogeneous criteria, i.e., criticality and rate or laxity, by maximizing the number of operations assigned to more efficient dispatching queues.

3.3 Adaptive Optimizations

In our prior adaptive scheduling research [11], a previous-generation real-time adaptive resource manager (RT-ARM) [10] interacted with a previous-generation instance of our scheduler via its sensitivity interface. This interface allowed the RT-ARM to (1) propose a specific assignment of rates to operations, (2) obtain a boolean feasibility assessment for that assignment, and (3) obtain a number representing the sensitivity of that feasibility result to increases or decreases in the rates assigned to the operations. The RT-ARM performed these steps whenever a transition between steady states was needed. To perform its assignment algorithm, the RT-ARM iteratively extended a set of rate-to-operation bindings, adding new bindings and updating existing ones based on responses from the scheduler to feasibility and sensitivity queries.

The individual performances of the RT-ARM and the scheduler sensitivity implementation were reasonable. Both (1) the number of calls to the sensitivity interface, and (2) the amount of time spent assessing feasibility and sensitivity within each operation, were roughly proportional to the number of operations in the schedule. The combined behavior of the RT-ARM and scheduler was not as good as we might hope, however, since the product of the number of calls and the time per call produces an overall performance curve that is bounded by $O(n^2)$ or $O(n \log(n))$ in the number of operations. Therefore, we apply the following refinements to optimize the combined behavior, illustrated in Figure 7:

A. De-normalized operation descriptors: We de-normalize the available rate set and fixed characteristics for each operation into a sequence of flat tuples of characteristics (containing e.g., the operation handle, a particular rate, the execution time at that rate). We then derive information that facilitates sorting for and utilization bounds checking. For example, we specify the index of a tuple within an operation’s ordered set of rates, and the utilization difference for an operation between each pair of its consecutively indexed tuples. This optimization can help meet our goal to trade performance of individual elements (i.e., rate of execution) for overall performance objectives (i.e., maximizing the number of feasible operations).

B. Rate and priority sorting: We recast rate and priority assignment as a sorting problem over operation characteristics, with at worst an $O(n \log(n))$ bound on worst-case performance, and an $O(n)$ bound on worst-case performance in certain special instances of the more general problem. Since our scheduling approach applies to arbitrary collections of operation characteristics, for some combinations of operations and scheduling strategies an $O(n \log(n))$ comparison sort may be needed. For our target avionics application, however, all operations are known in advance and the value spaces of the characteristics of interest (e.g., whether an operation is mandatory, its available periods) are small, so the more efficient $O(n)$ radix sorts are applicable in many cases.

This optimization can help meet our system goal to perform adaptive resource reallocations within firmly bounded time-scales. For example, consider a realistic application with 64 schedulable operations, each of which has (1) one of a fixed small set of criticality values, and (2) an associated set of available invocation periods chosen from a fixed similarly small set of period values. If we applied the previous-generation sensitivity-based approach, we would expect adaptive rescheduling to occur in time bounded above by $C_0 + 64C_1 + 4096C_2$. If we instead applied a comparison sorting strategy for combined rate and priority assignment, we would expect a tighter upper bound of $C_3 + 384C_4$. Finally, if we instead applied radix sorting for combined rate and priority assignment, we would expect a still tighter bound of $C_5 + C_6 n = C_5 + 64C_6$.

The constant overheads for the sensitivity, comparison sorting, and radix sorting approaches are expected to be similar. Therefore, we anticipate that experiments currently in progress to measure these factors precisely in all three cases, using a realistic application with around 64 schedulable operations on the target platform, will show adaptive rescheduling overhead reductions on the order of:

- **83%, i.e.,** a six-fold reduction – going from a best case $O(n \log(n))$ sensitivity approach to the radix sorting approach.
- **90%, i.e.,** a ten-fold reduction – going from a worst case quadratic sensitivity approach to the comparison sorting approach.
- **98%, i.e.,** a fifty-fold reduction – going from a worst case quadratic sensitivity approach to the radix sorting approach.
C. Assignment policies: We encapsulate specific sort ordering strategies as policies for rate assignment, much as we have done previously for scheduling policies [14]. We present two canonical strategies for rate selection, based on two different views of fairness:

- **FAIR Strategy:** In the first strategy, called Fair Assignment by Indexed Rate (FAIR), we emphasize fairness across all operations, ordering tuples by ascending rate index, then descending criticality, then mean rate, and finally by descriptor handle. This strategy selects the lowest rate for each operation, for mandatory first operations and then optional operations, then the next rate for each mandatory operation and the each optional operation, and so forth.

- **CB-FAIR Strategy:** In the second strategy, called Criticality-Biased FAIR (CB-FAIR), we emphasize criticality partitioning, and order tuples first by descending criticality, then by ascending rate index, then mean rate, and finally descriptor handle. This optimization adds flexibility to meet our goal to improve real-time performance across heterogeneous criteria, i.e., rate and criticality.

D. Rate Selection: Once the tuples are sorted, we perform a single $O(n)$ traversal of the tuples to select the rate of each operation and determine expected utilization values based on the rates selected and the advertised execution times. As we iterate through the sorted tuples, we maintain variables for (1) the total utilization by mandatory operations, and (2) the total utilization by all operations, based on the tuples selected so far. A tuple is selected if and only if the additional utilization, compared to the utilization for the previously admitted tuple for that operation, will still fit within the utilization threshold associated with that tuple. The highest rate of any tuple selected for an operation becomes the assigned rate for that operation. This optimization can help meet our goals to trade performance of individual elements for overall real-time objectives, and to perform adaptive resource reallocations within firmly bounded time-scales.

4 Related Work

Traditional approaches to QoS enforcement have adopted existing solutions from the domain of real-time scheduling [15, 9, 17], fair queuing in network routers [18], or OS support for continuous media applications [19]. In addition, there have been efforts to implement new concurrency mechanisms for real-time processing, such as the real-time threads of Mach [20] and real-time CPU scheduling priorities of Solaris [21].

In contrast to research on network- and OS-level QoS, the programming model for developers of OO middleware focuses on invoking remote operations on distributed objects. Determining how to map the results from the network and OS layers to OO middleware is a major focus of our research. Our previous research has examined many dimensions of DRE middleware, including static [22] and dynamic [14] scheduling and real-time event services [7]. This earlier work provides the basis for our research on optimizing a flexible middleware scheduling framework described in this paper.

Feng, et al. [23] compare and contrast previous-generation CORBA scheduling approaches and offered suggestions for producing more open and scalable real-time CORBA middleware. Our approach follows and expands on several of their suggestions, notably offering flexible policies and mechanisms for configuring a variety of scheduling approaches, while preserving isolation of the application from low-level scheduling details.

Montez, et al. [24] present an approach based on hybridizing polymorphic invocation and (m,k)-firm scheduling assurances. This approach could prove beneficial for RT-ARM [10] scheduling in particular, and we plan to investigate this approach for implementation in our framework.

Standard COTS middleware approaches, such as the approved Real-Time CORBA 1.0 [4] specification, and emerging approaches, such as Dynamic Scheduling Real-Time CORBA [5] (DSRT CORBA) and the RTSJ [6], generalize the possible range of scheduler implementations, rather than specifying a particular scheduling approach. Kokyu offers a natural basis for reuse of policies and mechanisms in implementing schedulers and associated dispatching infrastructures for either of these standards. In its current form, Kokyu is already accessible to DSRT CORBA under the C++ language binding. We intend to re-host Kokyu on a range of RTSJ-compliant environments, which would enable its use in implementing both the RTSJ schedulers and DSRT CORBA schedulers under the Java language binding.

5 Concluding Remarks

This paper presented a number of middleware-specific optimizations for a target application, using a flexible middleware scheduling framework. We describe a performance-oriented approach to designing and optimizing scheduling policies, and show qualitative and some preliminary quantitative evidence of our approach’s benefits. We believe these techniques are useful and appropriate for building mission-critical distributed real-time and embedded (DRE) applications using standards-based COTS middleware.

Lessons learned during the Kokyu research project include the following: (1) empirical results serve to validate an adaptive and hybrid scheduling approach; (2) quantifying the costs/benefits of discrete alternatives can be powerful when combined with feasibility analysis; (3) composable dispatching modules based on primitive elements enables
domain-specific and even environment-specific optimizations; (4) design decisions are aided by empirical data; (5) experiments currently underway are needed to offer a quantitative blueprint for co-scheduling middleware services such as the RT-ARM with applications; (6) these experiments will allow us to demonstrate a general co-scheduling technique where feasibility analysis and empirical studies meet.

The optimizations and framework extensions described in this paper have been integrated first into the TAO Event Service [7], and the Kokyu source code will be available as a distinct framework provided with the ACE [25] and TAO distributions. Our continuing work is focusing on (1) a more thorough analysis of the space of scheduling heuristics enabled by this approach, combining a priori observations and empirical measurements to offer specific patterns and overall design guidance to developers of DRE systems and (2) further work on measuring and optimizing real-time interactions with other higher-level resource managers and schedulers in adaptive DRE middleware.

6 Acknowledgments

This work was funded in part by Boeing. We gratefully acknowledge the support and direction of Boeing Principal Investigators David Corman and David Sharp. In addition, we would like to thank Boeing Engineers Brian Mendel and Jeanna Gossett for their contributions to this research.

References