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The � dose comparison tool has been used by numerous investigators to quantitatively compare
multidimensional dose distributions. The � tool requires the specification of dose and distance-to-
agreement �DTA� criteria for acceptable variations between the dose distributions. The tool then
provides a comparison that simultaneously evaluates the dose difference and distance to agreement
of the two dose distributions. One of the weaknesses of the tool is that the comparison requires one
of the dose distributions to have a relatively high spatial resolution, with points spaced significantly
closer than the DTA criterion. The determination of � involves an exhaustive search process, so the
computation time is significant if an accurate � is desired. The reason for the need for high spatial
resolution lies with the fact that the � tool measures the closest point in one of the dose distributions
�the evaluated distribution� with individual points of the other distribution �the reference distribu-
tion� when the two distributions are normalized by the dose difference and DTA criteria for the dose
and spatial coordinates, respectively. The closest point in the evaluated distribution to a selected
reference distribution point is the value of � at that reference point. If individual evaluated dose
distribution points are compared, the closest point may not accurately reflect the closest value of the
evaluated distribution as if it were interpolated on an infinite resolution grid. Therefore, a reinter-
pretation of the � distribution as the closest geometric distance between the two distributions is
proposed. This is conducted by subdividing the evaluated distribution into simplexes; line seg-
ments, triangles, and tetrahedra for one, two, and three-dimensional �3D� dose distributions. The
closest distance between any point and these simplexes can be straightforwardly computed using
matrix multiplication and inversion without the need of interpolating the original evaluated distri-
bution. While an exhaustive search is still required, not having to interpolate the evaluated distri-
bution avoids the drastic growth of calculation time incurred by interpolation and makes the � tool
more practical and more accurate. In our experiment, the geometric method accurately computes �
distributions between 3D dose distributions on a 200�200�50 grid within two minutes. © 2008
American Association of Physicists in Medicine. �DOI: 10.1118/1.2836952�

Key words: radiation therapy, dose distribution comparison, gamma comparison tool
I. INTRODUCTION The dose comparison tools were reviewed by Low and
Implementation of advanced treatment planning and delivery
systems has resulted in the development and use of multidi-
mensional dosimeters. These dosimeters provide the user
with large amounts of dose measurement data that need to be
analyzed by comparison with either other measurements or
calculations. The challenge of the comparisons of planar
dose data resulted in the definitions of useful dose compari-
son tools that have provided the user quantitative evaluations
of the differences between the two dose distributions. Some
of these analysis tool operators are symmetric with respect to
the two dose distributions, but some are not. This is resolved
by labeling one of the distributions as a reference and one as
the evaluated dose distribution. While these labels imply a
specific superiority or unique character of the reference dose
distribution relative to the evaluated dose distribution, the
user needs to understand the mathematical comparison op-
erators to determine which of the two dose distributions to

select as the reference.
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Dempsey1 and include the dose-difference tool and the
distance-to-agreement �DTA� tool.2,3 The dose-difference
tool computes the numerical dose difference between the two
dose distributions at common points. The dose-difference
tool tends to be overly sensitive to discrepancies between the
two dose distributions in regions of steep dose gradients. The
DTA tool is computed for each reference dose point and
examines the evaluated dose distribution for the nearest lo-
cation that has the same dose as the reference point. The
DTA tool tends to be overly sensitive in shallow dose gradi-
ent regions, where small dose differences can lead to large
DTA values. Based on the complementary sensitivity of
these two tests, a third tool, termed the composite tool,2,4 was
developed that examines the regions that fail the dose-
difference and DTA tests. Unlike the dose-difference and
DTA tests, the composite tool requires the user to select ac-
ceptance criteria to describe the comparison outcomes. The

result is a binary distribution indicating the locations that
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failed both the dose-difference and DTA tests. Therefore, the
two distributions can be considered equivalent if either �a�
the dose differences are within user-specified criteria, or �b�
the DTA is within an acceptable distance. A weakness of the
composite tool is that it does not provide a continuous scalar
comparison value. Therefore, the user does not know by how
much the dose distributions passed or failed the test.

To overcome some of the limitations of the composite
test, Low et al.1,5 developed a tool called the � tool. The �
tool provides a comparison distribution consisting of a con-
tinuous range of values that characterize the difference be-
tween the reference and evaluated distributions relative to
user-specified acceptance criteria. Investigators have used
the � tool to compare dose distributions.6–15 The perfor-
mance of the � tool has also been investigated by Caccia
et al.7 and Stock et al.16

Like the DTA tool, implementation of the � tool requires
a search process within the evaluated distribution for each
point in the reference distribution. One of the challenges of
implementing the � calculation is that the spacing between
points in the evaluated dose distribution is often large when
compared against the distance criterion. This leads to arti-
facts in the � dose calculation in regions of steep dose gra-
dients. One method of reducing the artifacts is to interpolate
the evaluated distribution to a spatial resolution consistent
with acceptable interpolation artifacts. This increases the
number of points that require interrogation when computing
� and consequently some alternatives to � have been pro-
posed.

Bakai17 proposed a modification to the � tool, whereby an
ellipse within the spatial axes was defined around each ref-
erence point. Rather than renormalizing both the dose and
distance dimensions, the dose dimension was modified by
multiplying the dose by the ratio of DTA to dose-difference
criteria. The modified dose axis had units of distance, con-
sistent with the spatial axes. The acceptance ellipses used in
the � calculation became a tube �for a one-dimensional ex-
ample� that followed the reference distribution. The goal of
the evaluation was to determine where the evaluated distri-
bution entered the tube and consequently passed the com-
parison test. In order to make the evaluation process more
efficient, Bakai et al.17 used the tube concept to define an
evaluation factor �, which was computed once for each ref-
erence point. The acceptance criterion at a reference point
was determined using the local dose gradient, the dose-
difference and DTA criteria. The value of � was the ratio of
the dose difference to the locally determined acceptance cri-
terion, and if ��1, the comparison passed. They found that
their � evaluation was 120 times faster than the original �
evaluation. One limitation of the � evaluation was that it
required the evaluated and reference distribution to be on the
same grid resolution so that the gradient of the reference
distribution could be determined. The original � algorithm
works for any reference distribution spatial density.

Depuydt et al.18 used a filter cascade method for reducing
the interpolation artifacts in the � calculation. Their method
produced a pass/fail metric. They limited the evaluation

point search to the spatial radius of the DTA criterion. If the
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closest evaluation dose distribution point was not within the
acceptance ellipsoid the evaluation process failed at that ref-
erence dose point. An exhaustive search was conducted
within the local region of the reference dose point, and as
soon as a single reference dose point was found that would
pass the � criteria, the search was ended. If no points within
the local region passed, then another search was done to
determine if the dose difference changed sign within the lo-
cal region. If so, there must have been a location �which
would require interpolation to locate� where the dose differ-
ence was zero, and consequently ��1. Finally, if the evalu-
ation failed, a third test was conducted to determine if an
evaluation point just outside the DTA distance had an oppo-
site sign of the evaluation points just inside the DTA dis-
tance. If so, the � test was said to pass at the reference dose
point. The multistep cascade process resulted in an efficient
method of determining whether the two distributions lay
within or without the dose-difference and DTA criteria, but
provided only a pass/fail result, not the continuous value of
�.

Wendling et al.19 recently reported a method for improv-
ing the performance of the � algorithm. They conducted the
exhaustive search for � by interpolating the evaluated distri-
bution, but conducting the search in a radial pattern, starting
at the reference dose point, and precomputing and storing the
interpolation factors. They found a better than 75% reduction
in calculation time when using this approach. However, the
use of uniform interpolation of the evaluated distribution
made the calculation time grow cubically with the increase in
grid resolution. According to their report, the calculation
time typically exhibited an eightfold increase each time the
grid spacing was reduced by half through interpolation.

The reason that � requires significant computer resources
is due to the need for interpolation. In the renormalized dose-
distance space, the process of determining � is equivalent to
locating the shortest distance that the evaluated dose distri-
bution makes to the reference dose point. For one-
dimensional dose distributions, the shortest distance lays at
either an evaluated dose point or is normal to lines connect-
ing neighboring evaluated dose points �linear interpolation�.
By approaching the problem as a geometric one, powerful
geometric interpolation algorithms can be applied to the
computational challenge.

II. METHODS AND MATERIALS

The formalism for computing � was published by Low
and Dempsey1 but is repeated here for clarity. The � function
is defined for each reference dose point rr as

��rr� = min
re

��rr,re� , �1�

where re refers to the evaluated dose distribution points. The
value of � is determined for each reference and evaluated

dose point pairs as



881 Ju et al.: Geometric interpretation of � 881
��rr,re� =��re − rr�2

�d2 +
�De�re� − Dr�rr��2

�D2 , �2�

where Dr and De are the reference and evaluated dose levels,
respectively, and �d and �D are the distance-to-agreement
and dose-difference criteria, respectively. For the tests pre-
sented here, we used �d=3 mm and �D=3%.

The quantity � can be understood from a geometric per-
spective. In order to do this, renormalize the dose and dis-
tance spaces by the criteria such that the reference and evalu-
ated points become r̃r= �rr /�d ,Dr�rr� /�D� and r̃e

= �re /�d ,De�re� /�D�, respectively. The � function in Eq. �2�
then becomes the Euclidean distance

��rr,re� = �r̃r − r̃e� . �3�

In this nomenclature, � is simply the shortest distance
from a normalized reference point r̃r to any evaluated dose
distribution point r̃e.

II.A. Computing the � function: The interpolation
method

One problem with conducting the � calculation using the
original evaluated dose distribution points, without interpo-
lation, is that the errors of � in steep dose gradient regions
cause artifacts in the resulting � distributions. The cause of
these dose errors is illustrated in one dimension in Fig. 1�a�.
In this example, the � evaluation is being conducted in a
steep dose gradient region. The minimum distance between a
normalized reference point r̃r and the set of normalized
evaluated pixels can be much larger than the actual distance
from r̃r to the curve formed by connecting the points r̃e. The
conventional solution to this problem is to linearly interpo-
late the evaluated distribution at finer grid resolutions, which
effectively adds more points with shorter intervals on the
curve connecting the original points r̃e. The interpolation
method in current use does reduce the error in � but also
greatly increases the calculation time due to the increase in
the number of points to be compared. In addition, the evalu-
ation of � at discrete, higher density points, does not elimi-

FIG. 1. One-dimensional example: �a� Evaluating � by using original evalu-
ated dose points at steep-dose gradients in a one-dimensional distribution.
�b� Computing � as the geometric distance from the normalized reference
point r̃r to the dose curve representing normalized evaluated distribution.
nate the artifacts, even at high interpolation resolutions.
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II.B. Computing the � function: The geometric
method

The � function measures the shortest distance from a nor-
malized reference point r̃r to the evaluated distribution de-
scribed by the set of normalized evaluated points r̃e. Instead
of interpolating the evaluated distribution at discrete loca-
tions, consider the continuous surface that consists of all pos-
sible interpolated points, referred to as the dose surface. The
problem then is to find the closest distance from r̃r to this
surface. An example of the one-dimensional case is shown in
Fig. 1�b�. The evaluated dose distribution is a set of points
lying in the two-dimensional normalized dose-distance
space. The closest distance from r̃r to the evaluated distribu-
tion, now defined as line segments connecting the normal-
ized evaluated points r̃e, is �. Note that this is implicitly
applying linear interpolation in the sense that the regions
between successive evaluated points are defined by line seg-
ments, as opposed to curved segments such as a spline that
corresponds to higher order interpolation.

Similarly, for a two-dimensional dose distribution repre-
sented as a rectangular array of pixels, the dose surface lies
in the three-dimensional dose-distance space and consists of
evaluated points connected by quadrilateral elements ar-
ranged in a rectangular array. Finally, for a three-dimensional
dose distribution, the dose surface is a hyper surface lying in
the four-dimensional dose-distance space and consisting of
cubical elements.

The problem of efficiently finding the closest distance of a
surface to a point has been solved for simplicial meshes. A
simplicial mesh is a collection of simplexes, which them-
selves are surface elements defined by the smallest number
of vertices required by the dimensionality of the simplex.
Formally, in n-dimensional space, a k-simplex S �0�k�n�
is the convex hull of k+1 points �called the vertices of S�.
For example, possible simplexes in a three-dimensional
space are the 0 simplex �a point�, the 1 simplex �a line seg-
ment�, the 2 simplex �a triangle�, and the 3 simplex �a tetra-
hedron�, consisting of 1, 2, 3 and 4 vertices. The advantage
of working with simplexes over general shapes, such as
squares or cubes, is that the distance from a point to a sim-
plex can be computed easily in closed forms �to be discussed
next�.

The dose surface will be described as a simplicial mesh,
which is a collection of simplexes. Given an n-dimensional
dose distribution, the dose surface lies in an
�n+1�-dimensional space, and the simplex dimensionality re-
quired to describe the dose surface is k=n. For two-
dimensional dose distributions �n=2�, the three-dimensional
dose surfaces are converted to triangular meshes by dividing
each square defined by adjacent evaluated dose points into
two triangles �the 2 simplex�. For three-dimensional dose
distributions �n=3�, the four-dimensional hyper dose sur-
faces are converted into tetrahedral meshes by dividing each
cube into five tetrahedrons �the 3 simplex�, as shown in Fig.

2. If the dose surface representing the evaluated dose distri-
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bution is denoted as Ge, and the Euclidean distance from a
point p to a simplex S as D�p ,S�, the function � is computed
geometrically as

��rr� = min
S�Ge

D�r̃r,S� . �4�

II.C. Computing distance to simplexes

The distance from a point p to a shape S is the shortest
distance between p and any point lying on the boundary or in
the interior of S. To compute this distance, we first observe
that any boundary or interior point v of a convex shape S
�which simplexes are� can be expressed as

v = �
i=1

k+1

wivi �5�

where �v1 , . . . ,vk+1	 are vertices of S, and �w1 , . . . ,wk+1	 is a
set of non-negative weights that are partitions of unity, e.g.,
�i=1

k+1wi=1. Equation �5� can be used to compute the indi-
vidual components of v �e.g., x, y, and z�. In addition, when
S is a simplex and the weights wi are allowed to assume
negative values, Eq. �5� yields points that form the support
of S. Intuitively, the support of a k simplex is a line �k=1�, a
plane �k=2�, or a hyper-plane �k=3� that contains that sim-
plex. As an example, in the case of k=2, Eq. �5� implies that
every point on the two-dimensional plane containing a tri-
angle S can be expressed as a weighted combination of the
three vertices of that triangle.

To compute the distance from a point p to a k-simplex S
�k�0�, first consider the distance from p to the support of S,
which can be expressed as the minima

D̄�p,S� = min

�w1,. . .,wk+1	,s.t. �
i=1

k+1
wi=1


p − �
i=1

k+1

wivi
 . �6�

Because any point v on the support �either inside or outside
S� can be defined by a sum �i=1

k+1wivi, the right-hand side of

FIG. 2. Subdividing the dose surface into simplexes: �a� For a two-
dimensional does distribution, we split each square formed by four pixels
into two triangles. �b� For a three-dimensional dose distribution, we split
each cube formed by eight voxels into five tetrahedra.
Eq. �6� simply denotes the shortest distance between the
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point p and any point v on the support. In the case of k=2

�i.e., S is a triangle�, the shortest distance D̄�p ,S� is de-
scribed by the line passing through p and normal to the plane
containing S. The mathematically powerful feature of Eq. �6�
is that it can be formulated as a quadratic minimization prob-
lem, whose minimum is achieved when

�w1, . . . ,wk	 = �VTV�−1VTP, wk+1 = 1 − �
i=1

k

wi, �7�

where P and V are n�1 and n�k matrices, respectively, of
the form

P = �c1�p� − c1�vk+1�
]

cn�p� − cn�vk+1�
� ,

�8�

V = �c1�v1� − c1�vk+1� ¯ c1�vk� − c1�vk+1�
] ] ]

cn�v1� − cn�vk+1� ¯ cn�vk� − cn�vk+1�
� .

Here, cj�q� denotes the jth coordinate of point q for j
=1, . . .n. Note that the inverse �VTV�−1 exists when the sim-
plex S is non-degenerate.

The distance D̄�p ,S� computed in Eq. �6� may not be the
actual distance from p to the simplex S itself. For example,
in the case of k=2 �where S is a triangle�, the shortest dis-
tance between p and the plane containing S refers to a line
that passes through p and lies normal to the plane. The in-
tersection of the line with the plane may, or may not lie
interior to the triangle S. If the intersection lies outside S,

D̄�p ,S� is no longer the distance from p to S. The scenario
can be detected by checking if one or more of the values of
the weights �w1 , . . . ,wk+1	 computed by Eq. �7� are negative.
In these cases, the distance from p to S is the shortest dis-
tance between p and the boundary of S, denoted as �S. In the
example where S is a triangle, if one of the weights
�w1 , . . . ,w3	 is negative, the point on the triangle S that is
closest to p lies on the boundary of S, which consists of three
line segments.

Interestingly, for a k-simplex S, its boundary �S is a col-
lection of �k−1� simplexes. For example, the boundary of a
tetrahedron in the dose surface of a three-dimensional dose
distribution consists of four triangles, the boundary of a tri-
angle in the dose surface of a two-dimensional dose distri-
bution consists of line segments, and the boundary of a line
segment consists of points. This allows the actual distance

from p to a k-simplex S to be computed recursively as
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D�p,S� = D̄�p,S� If wi in Eq. �7� are all non-negative

min
Si��S

D�p,Si� Otherwise
. �9�
The recursion terminates when S is a 0 simplex �a single
point� �v1	, where D�p ,S�= �p−v1�.

II.D. Fast implementation

The geometric method computes the � value at each ref-
erence dose point by performing an exhaustive search over
all nearby simplexes in the dose surface representing the
evaluated distribution, as in Eq. �4�, and for each simplex,
performing a recursive evaluation for the geometric distance,
as in Eq. �9�. Two strategies are adopted in our implementa-
tion to respectively speed up the search and the evaluation
process.

First, the simplexes in the evaluated dose surface are
sorted by their shortest distances in the dose plane to the
reference dose point where � is to be computed. The radial
sorting has been shown to be able to dramatically speed up
the exhaustive search.19 The intuition is that the point on an
�n+1�-dimensional dose surface representing the evaluated
distribution that is closest to the reference dose point is more
likely to be located near the reference point in the original
n-dimensional dose space. Specifically, we consider an ap-
proximate distance from a normalized reference point r̃r

= �rr /�d ,Dr�rr� /�D� to a simplex S whose vertices are nor-
malized evaluated dose points r̃e= �re /�d ,De�re� /�D�

d�r̃r,S� = min
r̃e�S

�re − rr�
�d

. �10�

This approximate distance is the shortest distance from the
simplex to the reference point in the original n-dimensional
dose space. In the case of two-dimensional dose distribu-
tions, d�r̃r ,S� is the shortest distance on the two-dimensional
dose plane between the reference dose point and three evalu-
ated dose points, scaled by the distance-to-agreement crite-
rion. Note that d�r̃r ,S� is a lower bound of the actual geo-
metric distance D�r̃r ,S� in the �n+1�-dimensional dose-
distance space. Utilizing this fact, our program sorts all
simplexes S in the ascending order of d�r̃r ,S�, computes the
true geometric distance D�r̃r ,S� for each simplex in this or-
der, and terminates the computation when d�r̃r ,S� exceeds
the minimum geometric distance that has been found so far.
This minimum is then the � value at r̃r. In practice, the
sorting significantly reduces the number of simplexes where
the true geometric distance has to be computed compared to
an otherwise brute-force search. Note that the sorting can be
done as a one-time preprocess �because d�r̃r ,S� is indepen-
dent of the actual dose value at rr� and used for computing �

at all reference points.
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Second, the recursion in Eq. �9� can be limited to a subset
of all simplexes on the boundary �S based on the signs of the
weights wi obtained in Eq. �7�. In particular, a boundary sim-
plex only needs to be considered in the recursion if it is
opposite to a vertex vi in S whose associated weight wi is
negative. In the case where S is a triangle �i.e., a 2 simplex�,
its boundary consists of three line segments �which are 1
simplexes�, each opposite to a triangle vertex. Only those
line segments whose opposite vertex has a negative weight
need to be considered in the recursive evaluation in Eq. �9�.

FIG. 3. Two-dimensional reference and evaluated dose distributions used to

test the proposed � calculation algorithm.
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II.E. Examples

To evaluate the performance of the geometric computa-
tion of �, the two-dimensional dose distribution simulations
that were described in Low et al.1 were employed �Fig. 3�.
These dose distributions simulated a coronal projection
through a 10�10 cm2, 6 MV photon beam incident on a
water phantom. The reference dose distribution was normal-
ized to 1.0 at the central axis, had a maximum dose gradient
of 12% mm−1, and had a pixel spacing of 1�1 mm2. The
evaluated distribution was a modified version of the refer-
ence designed to highlight the behavior of � under dose and
spatial distortions. The square reference field was divided
along the diagonals into four quadrants. Quadrant 1 �right
quadrant� was identical to the reference dose distribution.
Quadrant 2 �upper quadrant� used the reference dose distri-
bution scaled by a factor proportional to the off-axis dis-
tance. The proportionality constant was 1.2% cm−1 such that
at 2.5 cm off-axis distance, the dose discrepancy was �3%.
Quadrant 3 �lower quadrant� used the reference dose shifted
by a distance proportional to the off-axis distance but along
the direction perpendicular to the field edge in that quadrant.
The dose was shifted by 1.2 mm cm−1 so that at an off-axis
distance of 2.5 cm, the shift was 3 mm. Quadrant four �left
quadrant� applied both dose and distance shifts. In this man-
ner, the performance of the � distribution to evaluate both
dose and distance discrepancies in both shallow and steep
dose gradient regions could be studied. The performance of
the proposed geometric technique was compared against the
conventional interpolation method with increasingly high
grid resolutions.

Three-dimensional dosimeters are an important develop-
ment in radiation therapy dosimetry.20–22 These are typically

FIG. 4. Three-dimensional reference and evaluated dose d
evaluated against three-dimensional dose distribution calcu-
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lations. Another three-dimensional dose comparison applica-
tion is the comparison of a treatment planning system dose
calculation with a calculation made using an independent
system.23 Both of these scenarios require a quantitative com-
parison tool and the � tool will be a useful tool if it is accu-
rately computed. The proposed method was evaluated by ex-
panding the original two-dimensional simulated dose
distribution into the depth direction by applying divergence
�assuming a 100 cm source-to-surface distance� and depth-
dose behavior �5% cm−1�. Surface buildup was not simu-
lated. The evaluated field was created by applying a constant
shift of 4 mm in each x, y, and z direction to the reference
field and both distributions were 20�20�5 cm3 in size.
Figure 4 shows coronal and sagittal projections through the
three-dimensional dataset. The spatial resolution was 1�1
�1 mm3.

III. RESULTS

Figure 5 shows the � distributions computed by the con-
ventional interpolation method and the proposed geometric
method. Note that the result using the original evaluated dose
points in �a� clearly exhibits artifacts, such as ripples, discon-
tinuities and large � values, at regions with steep dose gra-
dients. To achieve a similar accuracy level as the geometric
method �result shown in �f��, a grid resolution of at least 16
times finer than the original has to be used in the conven-
tional interpolation approach �shown in �e��. While such ar-
tifacts are reduced as the interpolation resolution increases,
the computational cost also increases dramatically. Using a
Core-2 duo 6600 processor, the time required to compute the
two-dimensional � test using the original, uninterpolated
evaluated dose points and the geometric method were 0.34

utions used to test the proposed � calculation algorithm.
istrib
and 0.38 s, respectively. However, when the factor-of-16 in-
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terpolation was used, 9.9 s was consumed to conduct the �
calculation using the interpolation method. Therefore, in or-
der to get accurate � distributions, the geometric calculation
provided a much more efficient computation method.

While the times required to calculate � in two dimensions
were relatively small, the time required for three dimensions
was notably longer. The � distributions computed using the
original evaluated dose points �without interpolation� and us-
ing our geometric method are shown in Fig. 6. Both distri-
butions are computed within minutes, requiring 67 and
127 s, respectively. However, without interpolation or using
the geometric computation, larger errors of � appear where
dose gradients are steeper, as shown in �a� �the periodic wave
behavior exhibited in Fig. 5 is not apparent because the pen-
umbra are parallel in Fig. 6�. To achieve a similar level of
accuracy as the geometric method, the conventional interpo-
lation approach would require a finer grid resolution than the
original, which would result in a cubically growing calcula-
tion time19 that far exceeds that of the proposed geometric
method.

IV. CONCLUSIONS

An accurate and efficient method for computing the �
function for comparing two-dimensional and three-
dimensional dose distributions has been proposed. The new
method utilizes a geometric representation of the dose distri-

FIG. 5. Results of the two-dimensional � distribution tests �3% and 3 mm c
using the interpolation method �a–e� and the poposed geometric method �f�.
that are 2, 4, 8 and 16 times finer than the original 1�1 mm2 resolution.
bution, and produces accurate results independent of dose
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gradients and grid spacing. As demonstrated in the test ex-
amples, at equivalent � calculation accuracy, the proposed
method is much more efficient than the traditional interpola-
tion method. In general, the � values computed by interpo-
lation have artifacts in steep dose gradient regions that cause
an overestimation of �. This is because the Euclidean dis-
tance from a reference position to the evaluated dose surface
is a lower bound of the distance between the reference posi-
tion and any sampled point on that surface. Using the sim-
plicial mesh representation of the dose surface, the proposed
method of calculating � is as accurate as linear interpolation
within each simplex but much more efficient relative to in-
terpolation.

The use of the geometric model for the calculation of �
does not preclude the need for an exhaustive search. The
distance between each simplex and the reference dose point
requires calculation so that the minimum value can be deter-
mined. The search can be limited according to the DTA cri-
terion based on the maximum value of � that the user needs
to quantitatively compute. For example, if the maximum
value of � for which the user requires a quantitative deter-
mination is �=10, the maximum radial distance required for
the � search is ten times the DTA criterion.

The geometric computation of � also allows the use of a
lower-resolution grid for dose comparison in place of the
original high-resolution does distributions. Since the geomet-

arison criteria�. The two dose distributions shown in Fig. 3 were compared
interpolation method was conducted at increasingly high spatial resolutions
omp
The
ric method is as accurate as linear interpolation, the � com-
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puted at a lower resolution �e.g., 2 mm� would be accurate
compared to that computed at a higher resolution �e.g.,
1 mm� in regions where the higher-resolution distribution
exhibits a linear behavior, that is, where the second deriva-
tive �e.g., change in the gradient� of the dose is small.

This computational tool has been integrated into the open-
source Computational Environment for Radiotherapy
Research,24 and will be made available in a future release of
that system.
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