Unless the problem specifies otherwise, for any NP-completeness proof you can only use the following problems for your reduction: CIRCUIT-SAT, FORMULA-SAT, 3-CNF-SAT, CLIQUE, VERTEX-COVER, SUBSET-SUM, PARTITION, HAM-CYCLE, TSP.

Core Problems

1. (10 pts) Given a set of \(m \) linear constraints over \(n \) variables, the integer-programming (IP) decision problem asks whether there is an integer \(n \)-vector \(x \) giving values for each of the \(n \) variables such that all the constraints are satisfied. Prove that IP is NP-complete.

 Hint: The arithmetic expression \(1 - x \) performs a negation when \(x \) is 0 or 1.

2. (15 pts) The CSE department needs to select a set of courses to offer during Summer 2005. All students are invited to submit a list of courses which they would like to take. There are \(s \) students who submit such a list where student \(i \) gives list \(L_i \). The goal is to find a set of courses \(S \) to offer in Summer 2005 where \(|S| \) is minimized such that \(S \) contains at least one element from \(L_i \) for \(i = 1, \ldots, s \). You are to either give a polynomial time algorithm for this problem (and prove it is correct), OR state a decision version of this problem and prove it is NP complete.

3. (20 pts) Consider the following Restaurant Critic problem. There are \(n \) restaurants you need to compare. You have asked for many opinions with each one modeled by a weighted directed edge. The edge \(e \) from \(i \) to \(j \) with weight \(w(e) \) indicates that \(j \) is better than \(i \) and the weight \(w(e) \) indicates how strongly this belief is held. So the opinions can be modeled by a weighted directed graph \(G = (V, E) \). Your goal is to produce a directed acyclic graph (i.e. a directed graph without any cycles) \(G' = (V, E') \) where \(E' \subseteq E \) such that \(\sum_{e \in E'} w(e) \) is maximized. In other words you want to provide a non-conflicting set of recommendations with as much weight as possible.

 (a) (12 pts) Define RC as a decision version of this problem, and then prove that RC is NP-complete. To do this you can make use of the fact that FVS (defined below) is NP-complete. A feedback vertex set in directed graph \(G = (V, E) \) is a subset \(V' \subseteq V \) such that \(V' \) contains at least one vertex from each directed cycle in \(G \). The feedback vertex set problem (FVS) is: Given a directed graph \(G \) and an integer \(\ell \), does \(G \) have a feedback vertex set with at most \(\ell \) vertices?

 (b) (8 pts) Consider the following approximation algorithm for the optimization version of the Restaurant Critic problem.

 - Assign an arbitrary ordering to the vertices in \(V \).
 - Let \(E_1 = \{(i, j) \mid i < j \} \) and let \(E_2 = \{(i, j) \mid i > j \} \). That is if you put the vertices in order from left to right, \(E_1 \) are the edges that go to the right and \(E_2 \) are the edges that go to the left.
 - If \(\sum_{e \in E_1} w(e) \geq \sum_{e \in E_2} w(e) \) then return \(E_1 \). Else return \(E_2 \).

 Prove the above is a 2-approximation.
4. (10 pts) In this problem you will analyze an approximation algorithm for the knapsack problem. Let the input be \(v_1, \ldots, v_n \) (the item values), \(w_1, \ldots, w_n \) (the item weights), and \(W \) (the knapsack capacity). The goal is to find a set of items \(S \) such that \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} v_i \) is maximized. Here is an approximation algorithm. First sort the items so that

\[
\frac{v_1}{w_1} \geq \frac{v_2}{w_2} \geq \cdots \geq \frac{v_n}{w_n}
\]

We now use the following variation of the greedy algorithm. Let \(S_{\text{greedy}} \) be the answer computed by the greedy algorithm. Namely, \(S_{\text{greedy}} \) chooses the first \(k \) objects that fit. That is, \(k \) satisfies

\[
\sum_{i=1}^{k} w_i \leq W \quad \text{and} \quad \sum_{i=1}^{k+1} w_i > W.
\]

The approximation algorithm returns the better of \(S_{\text{greedy}} \) or the single item \(k + 1 \). Prove the best approximation ratio you can for this algorithm. Some useful expressions to consider are \(v_1 + v_2 + \cdots + v_k + v_{k+1} \) and the value of the approximate solution: \(\max\{v_1 + \cdots + v_k, v_{k+1}\} \).

Advanced Problems (Required only for CSE 541T students)

5. (15 pts) Consider the optimization version of MP-SCHED (from HW 3). For \(1 \leq i \leq m \), let \(A_i \) contain the set of jobs that will run on machine \(i \) in the solution and let \(\ell(a) \) be the time required by job \(a \). (So \(A = A_1 \cup A_2 \cup \cdots \cup A_m \)). The goal in the optimization version is to find a partition \(A_1, \ldots, A_m \) that minimizes the time when the last job completes. That is, you want to minimize \(\max_{A_i} \sum_{a \in A_i} \ell(a) \). Here is an approximation algorithm for this problem. You are given a list of jobs in an arbitrary order. Whenever a machine becomes available, the next job on the list is assigned to begin processing on that machine. Prove the best approximation ratio you can for this algorithm.

Here is some guidance to get you started. For \(a \in A \) let \(s(a) \) be the time \(a \) is started in the approximate solution \(S \). Let job \(k \) be the job to finish last in \(S \). Let \(C \) be the cost of \(S \) and let \(C_a \) be the cost of the optimal solution. Think about the relationship between \(C \) and \(C_a \) in terms of \(s(k) \) and \(\ell(k) \). Also think about what you can say about \(C_a \) with respect to the average job length. Finally, give the best upperbound you can for \(s(k) \) and then put all of these pieces together. **Hint:** You can do better than a 2-approximation.