Finish up Problem from last class

Version 1: One robot start + goal in maze

Vertex for each grid square
Edge if no wall between two grid squares (undirected, unweighted)

Run BFS from start (source = start) and report best path to goal
Version 2: 2 robots each with start + goal – can never be adjacent or in same position.

source

\((\text{robot 1}, \text{start}, \text{start}) \)

vertex: state of world as given by ordered pair of robot location

goal

\((\text{robot 1}, \text{goal}, \text{goal}) \)

edge: edge from \(S_1 \) – \(S_2 \) when a single move by each robot goes between \(S_1 \) + \(S_2 \)
Greedy Tree Builder

- Change semantics associated with tag/priority for each vertex

- Change tag/priority given to source/seed

- decide if min or max priority vertex is the best one to pick next
<table>
<thead>
<tr>
<th>Tag semantics for V</th>
<th>Shortest path</th>
<th>MST</th>
<th>Max bottleneck</th>
</tr>
</thead>
<tbody>
<tr>
<td>length of shortest path found so far from s to v</td>
<td>min edge to connect v to partial T</td>
<td>value of max bottleneck path so far from s to v</td>
<td></td>
</tr>
<tr>
<td>tag for source/seed</td>
<td>0</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>Min or max</td>
<td>min</td>
<td>min</td>
<td>max</td>
</tr>
</tbody>
</table>
Greedy Tree Builder

Initially \(s \) is placed in \(T \). Then the following steps are repeated until all discovered vertices have been placed in \(T \).

1. Select the vertex \(u \in Q \) with the highest priority over all vertices in \(Q \). (For each algorithm, a proof that this greedy choice is part of an optimal solution is required to prove that the final solution is optimal.)

2. Remove \(u \) from \(Q \), which implicitly places \(u \) in \(T \). Since the cost for each vertex \(v \in Q \) represents its best connection to some vertex in \(T \), the addition of \(u \) to \(T \) provides a new possible connection for each vertex \(v \notin T \).

3. Consider all outgoing edges \(e = (u, v) \) from \(u \).

 (a) If \(v \in U \), then \(v \) is placed into \(Q \) after setting the edge from its parent to \(e \) and initializing \(v_{\text{cost}} \) to the cost associated for parent edge \(e \).

 (b) If \(v \in Q \), the cost associated with \(v \), for parent edge \(e \), is computed. If this cost \(c \) is better than \(v \)'s current cost, then the cost for \(v \) is set to \(c \) and its parent edge is set to \(e \).
Function to Consider an Edge

```java
void consider(E e, double parentCost, TaggedPriorityQueue<Double, V> pq) {
    double newCost = getCost(e, parentCost);
    if (newCost < loc.get().getTag()) {
        edgeFromParent = e;
        cost = newCost;
        pq.updateTag(cost, loc);
    }
}
```

Shortest path: parent Cost + e.weight
MST: e.weight
max bottleneck: min(parent Cost, e.weight)
void greedyTreeBuilder(tree, seedCost, comp)

Create a TaggedPriorityQueue<Double, V> pq that uses comp
add source/seed as root of tree with cost seedCost
source.loc = pq.putTracked(seedCost, source)

While (!pq.isEmpty())
 V u = pq.extractMax().getElement();

 for each outgoing edge e leaving u
 if (e.weight < 0) throw new NegativeWeightEdgeException
 V v = other endpoint of e (other than u)

 vData is an object holding data associated
 with v. For this algorithm
 if (vData.loc. in Collection(v))
 vData.consider(v, e, vData.getCost(e u's cost))
 else
 add v to tree with parent e + cost
 vData.loc = pq.putTracked(vData, cost, v)
Prim's Minimum Spanning Tree
Algorithm

Algorithm that results with greedy tree builder
Time Complexity of greedy tree builder

\[O\left(n \cdot T_1(n) + n T_E(n) + m T_U(n)\right) \]

- Insertion cost in a priority queue or \(n \) elements
- Extract Max time
- Update cost (raise priority)

- \(O(1) \)
- \(O(\log n) \)
- \(O(1) \)
Knapsack holds 100 lbs

80, 50, 40
Prove correctness of Prim's MST

Step 1 Prove first edge selected is part of some MST

Use proof by contradiction
Claimed MST T adding e to T must creat a cycle then remove other edge in cycle with S.
know part of optimal
new vertex

graph contraction