Tradeoff between space and search time

As we increase λ^*, use less space but higher expected cost per search.

This is a pretty large value $\lambda^* = 7/8 \quad \frac{1}{1 - 7/8} = 8$

As we decrease λ^*, use more space but have lower expected cost per search.

$\lambda^* = 1/4 \quad \frac{1}{1 - 1/4} = 4/3 \quad \text{space} \quad 4m$
Separate Chaining

Have a list referenced by each slot of hash table that holds all elements that hash to that slot (one hash function).

\[
\text{insert}(e) \quad \text{add it to list table}[\text{hash}(x)]
\]

\[
\text{locate}(e) \quad \text{search within list table}[\text{hash}(x)]
\]

\[
\text{remove}(e) \quad \text{remove } e \text{ from list table}[\text{hash}(x)]
\]
Resizing hash table

No absolute limit on \(n/m \) (could go arbitrarily high), but cost is too high

Open addressing \(\lambda < 1 \)

Resize upward when \(\lambda \) reaches \(2^k \)
Resize downward when \(\lambda \) reaches \(\lambda^* / 2 \)
Analysis

Expected cost for unsuccessful search

\[\frac{n}{m} = \alpha \]

expected list length

\[E[\# \text{ probes in an unsuccessful search}] = 1 + \alpha \]

\[E[\# \text{ probes in a successful search}] = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n} \]

open addressing

\[\frac{1}{1 - \alpha} = 1 + \alpha + \alpha^2 + \ldots \]
Summary of Set ADT Implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Unsuccessful Search</th>
<th>Successful Search</th>
<th>Approximate Space Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Addressing</td>
<td>1</td>
<td>1</td>
<td>(m)</td>
</tr>
<tr>
<td>Separate Chaining</td>
<td>(1 + \alpha)</td>
<td>(1 + \frac{\alpha}{2} - \frac{\alpha}{2n})</td>
<td>(2n + m = n \left(3 + \frac{1}{\alpha} \right))</td>
</tr>
<tr>
<td>(\alpha = 1/2)</td>
<td>1.5</td>
<td>(\approx 1.25)</td>
<td>(4n)</td>
</tr>
<tr>
<td>(\alpha = 3/4)</td>
<td>1.75</td>
<td>(\approx 1.375)</td>
<td>(3 \frac{1}{3} n)</td>
</tr>
<tr>
<td>Separate Chaining</td>
<td>2</td>
<td>(\approx 1.5)</td>
<td>(3n)</td>
</tr>
<tr>
<td>(\alpha = 1)</td>
<td>4</td>
<td>(\approx 2.5)</td>
<td>(2 \frac{1}{3} n)</td>
</tr>
<tr>
<td>Separate Chaining</td>
<td>2</td>
<td>(\approx 1.5)</td>
<td>(3n)</td>
</tr>
<tr>
<td>(\alpha = 3)</td>
<td>4</td>
<td>(\approx 2.5)</td>
<td>(2 \frac{1}{3} n)</td>
</tr>
<tr>
<td>Open Addressing</td>
<td>(\frac{1}{1 - \alpha})</td>
<td>(\frac{1}{\alpha \ln \frac{1}{1 - \alpha}})</td>
<td>(m = \frac{(n + d)}{\alpha})</td>
</tr>
<tr>
<td>(\alpha = 1/4)</td>
<td>4/3</td>
<td>(\approx 1.15)</td>
<td>(4(n + d))</td>
</tr>
<tr>
<td>(\alpha = 1/2)</td>
<td>2</td>
<td>(\approx 1.39)</td>
<td>(2(n + d))</td>
</tr>
<tr>
<td>(\alpha = 3/4)</td>
<td>4</td>
<td>(\approx 1.85)</td>
<td>(\frac{4}{3} (n + d))</td>
</tr>
</tbody>
</table>
Unsuccessful Search Cost as a Function of Load

\[\frac{1}{1-\lambda} = 1 + \lambda + \lambda^2 + \lambda^3 + \ldots \]

Graph:
- **Open Addressing**
- **Separate Chaining**

Axes:
- **Y-axis:** Expected cost of unsuccessful search
- **X-axis:** Load (\(\alpha \))

Legend:
- Open Addressing
- Separate Chaining

Notes:
- The graph compares the expected cost of unsuccessful search between Open Addressing and Separate Chaining.
- The formula \(\frac{1}{1-\lambda} = 1 + \lambda + \lambda^2 + \lambda^3 + \ldots \) illustrates the relationship between load and expected cost.
Comparison of search cost for space usage of ~3n.