Overview of Asymptotic Notation

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>(\lim_{n \to \infty} \frac{f(n)}{g(n)})</th>
<th>Alternate Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n) = O(g(n))) ("big-Oh")</td>
<td>constant or 0</td>
<td>(f(n) \leq \lim g(n))</td>
</tr>
<tr>
<td>(f(n) = \Omega(g(n))) ("big-Omega")</td>
<td>constant or (\infty)</td>
<td>(f(n) \geq \lim g(n))</td>
</tr>
<tr>
<td>(f(n) = \Theta(g(n))) ("big-Theta")</td>
<td>constant</td>
<td>(f(n) = \lim g(n))</td>
</tr>
<tr>
<td>(f(n) = o(g(n))) ("little-oh")</td>
<td>0</td>
<td>(f(n) < \lim g(n))</td>
</tr>
<tr>
<td>(f(n) = \omega(g(n))) ("little-omega")</td>
<td>(\infty)</td>
<td>(f(n) > \lim g(n))</td>
</tr>
</tbody>
</table>
Analyzing Divide-and-conquer Algs

Remainder

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + \Theta(n) \]

- \# of subproblems that we recursively solved
- Size of each subproblem (really, \(\left\lfloor \frac{n}{b} \right\rfloor \) or \(\frac{n}{b} \))
- Total time for divide and combine steps together
- \# statements (time) when input is size n (worst-case)
- Base: \(T(c) = \Theta(1) \) problem size where you no longer recurse
Master Method

Solve asymptotically any recurrence of form

\[T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^k (\log n)^c) \]

\[T(c) = \Theta(1) \text{ for some constant } c \]

Constants \(a \geq 1, \ b > 1, \ l \geq 0, \ k \geq 0 \)

Compare \(l \) and \(\log_b a \)

\(n^c \quad n^{\log_b a} \text{ is \# of times termination condition is reached} \)
Case 1: $l < \log_b a$

$T(n) = \Theta(n^{\log_b a})$

Master Method

$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^l \log(n)^k)$

Case 2: $l = \log_b a$

$T(n) = \Theta(f(n) \cdot \log n) = \Theta\left(n^{l} (\log n)^{k+1}\right)$

Case 3: $l > \log_b a$

$T(n) = \Theta(f(n)) = \Theta\left(n^{l} (\log n)^{k}\right)$
min \((A, P, r)\)
if \(P = r\) return \(A[p]\)
\(q = (p + r) / 2\)
\(m_1 = \min(A, P, q)\)
\(m_2 = \min(A, q + 1, r)\)
return \(\min(m_1, m_2)\)

\(T(n) = 2T(n/2) + \Theta(1)\)
\(n = A.length + 1\)
\[T(n) = 2 T\left(\frac{n}{2}\right) + \Theta(1) \]

\[a = b = 2 \quad \log_b a = 1 \]

\[l = 0, \quad k = 0 \quad n^0 = 1 \quad (\log n)^0 = 1 \]

\[\log_b a > l \]

\[T(n) = \Theta(n) \]

Why is this not the best algorithm choice?
\[T(n) = 3T\left(\frac{n}{3}\right) + \Theta(n) > \log n \]

\[a = b = 3 \quad \log_b a = 1 \]

\[\lambda = 1 \quad k = 0 \]

\[\lambda = \log_b a \]

\[T(n) = \Theta(n \log \log n) \]
Return to maximum contiguous subsequence problem

\(\leq 1 \)

Split the array in half \(\Theta(1) \)
 remember left & right index of the portion being considered

\(2T(\frac{n}{2}) \) Recursively solve 2 halves

\(\Theta(n) \) \(/\)
 compute running sums from middle to both left & right, remember max & then add two maxs to see if better than result from both recursive calls
\(\Theta(n) \) think of as growing as \(c \cdot n \)

\(c \) some constant

\[\Theta\left(\frac{n}{2}\right) = c \cdot \frac{n}{2} = \frac{c}{2} \cdot n \]

why no meaning?
Saw

\[T(n) = 2T(n/2) + C \cdot n \]

\[= C \cdot n \log_2 n \]

with the right termination \(T(1) = 1 \)
\(n/2 \text{ elements} \)

- Running +
- Remember max

\(\frac{n}{2} \text{ (looks at each element)} \)

\(\frac{n}{2} \text{ addition if bigger set variable} \)

\(C \cdot \frac{n}{2} = \Theta(n) \text{ (Constant)} \)
$T(n) = 2T(n/2) + \Theta(n)$

$= \Theta(n \log n)$

Better than brute-force $\Theta(n^2)$

Not as good as best alg $\Theta(n)$
Nested Loops (much more on pre-recorded lecture)

\[\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=j+1}^{n} c \]

\[\Theta(n^2) \]

\[\Theta(n) \]
\[
\sum_{j=0}^{n-1} \text{values of } j,
\]

\[
\begin{array}{ccc}
0 & 1, \ldots, n-1 & n-1 \\
1 & 2, \ldots, n-1 & n-2 \\
2 & & n-3 \\
& & \\
\vdots & & \\
\vdots & & \\
n-1 & & 1 \\
\end{array}
\]

\[
\sum_{i=1}^{n-1} (n^2) = \frac{n(n-1)}{2}
\]
Binary Search

input sorted array + value

5 8)9 12 17 20 21 22 27

x < 17

recurse here

x = 10
binary search \((A, p, r, x)\)

\[q = (p + r) / 2 \]

- If \(x < A[q]\)
 - binary search \((A, p, q-1, x)\)
- Else
 - binary search \((A, q, r, x)\)

Termination
- \(\Theta(1)\)

Split
- \(\Theta(1)\)

No combine
\[T(1) = \Theta(1) \]
\[T(n) = T(n/2) + \Theta(1) + \log n \]

\[a = 1, \quad b = 2 \quad \log_2 1 = 0 \]
\[k = l = 0 \]
\[l = \log_2 a \]
\[2^l = 1 \]

Case 2
\[T(n) = \Theta(\log n) \quad \sqrt{\log_2 8} = 3 \]
Strassen's Matrix Multiplication

\[n \left[\begin{array}{c} a_1 \\ a_2 \\ \vdots \end{array} \right] \left[\begin{array}{c} b_1 \\ b_2 \\ \vdots \end{array} \right] = \left[\begin{array}{c} c_1 \\ c_2 \\ \vdots \end{array} \right] \]

\[n^2 \text{ entries} \]

\[\Theta(n) \text{ time each} \]

\[\Theta(n^3) \]
\[
\begin{bmatrix}
\frac{n}{2} & a & b \\
\sqrt{c} & d \\
\end{bmatrix}
\times
\begin{bmatrix}
e & f \\
g & h \\
\end{bmatrix}
\]

Obvious divide and conquer

\[
a = 8, \quad b = 2, \quad \log_b a = 3 > l \quad \Rightarrow \quad T(n) = \Theta(n^3)
\]

\[
T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)
\]

\[
l = 2, \quad k = 0
\]
Find a clever to instead
use only 7 matrix multiplys

$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$

$log_b a = log_2 7 > \ell = 2$

$T(n) = \Theta(n^{log_2 7})$