Red-Black Trees (Balanced Binary Search Trees)

Representation Properties

- **Black Balanced** - the number of black nodes on any path from root to a leaf is the same (black height)
- **No Double Reds**
 - No red node has a red child
- **Root Black**
 - Root is black

Inorder

Frontier (instead of null)

black height of 2
Upper bound on Height

Show height \(\leq 2 \log_2 (n+1) \)

A complete binary tree of \(l \) levels has \(2^l - 1 \) nodes

- \(l=1 \)
 - \(2^1 - 1 = 1 \)
- \(l=2 \)
 - \(2^2 - 1 = 3 \)
- \(l=3 \)
 - \(2^3 - 1 = 7 \)

\(\max \) \# nodes on a path from root to a leaf

Prove above claim by induction
In a red-black tree with black height bh

$$
\text{# nodes} \rightarrow n \geq 2^{bh} - 1
$$

By algebra $bh \leq \log_2(n+1)$

By No Double Reds & Root Black at least half of nodes on any path from root to a leaf are black $\Rightarrow h \leq 2 \log_2(n+1) = O(\log n)$
Non-mutating methods

min, max, search, pred, successor
in-order traversal

Just ignore the color!
It's a valid binary search tree

Cost \(O(h) = O(\log n) \)

In a binary search tree, time complexity to return all elements in range \([b, e]\) is \(O(h + k) \) where \(h \) is the height of tree and \(k \) is the number of elements in given range.
Insertion

Insert the new element in standard way as a red node.

Black Balanced \{ key properties to worry about \}

NoDoubleReds \{ too expensive to fix if violated. Keep it preserved throughout \}

Take possible NoDoubleReds violation & use recoloring & rotations to move violation up towards root until fixed or reaches root.
Case 1: extraRed’s uncle is red (extraRed could be any of y’s four grandchildren)

Recolor propagating extra red up the tree

possible violation with its parent
(no other violation of noDoubleReds + BlackBalance is preserved)
Case 2: extraRed's uncle is black
(could be mirror image)

Case 2a: extraRed
opposite child as its parent (zig-zag)

Lift the extraRed

Still have violation
(at same level
of tree) but
now zig-zig

Only violation of NoDoubleRed
Case 2: extraRed's uncle is black

Case 2b: extraRed same child as its parent (zig-zig)

Lift the extraRed's parent (after which there is no extraRed remaining)

DONE!
Example, insert 0 into below

Case 2a

Case <

Extra red

Only nodes are colored
Time complexity for insert binary search tree insertion

\[O(h) = O(\log n) \]

insert fix up

\[\leq h/2 \text{ case 1s (constant time each) } \leq \text{ once for case 2a+2b} \]
Deletion (details on pages 523-528 G&G 298-293 CLRS)

If node \(x \) to delete has 2 children, replace \(x \) by its successor \(y \) (could use predecessor) where \(y \) is given color of \(x \)

Then remove \(y \).

How to do this!

In other cases (\(x \) has 0 or 1 child) let \(y \) be the node to delete.
If y was red
we're done.

If y is black
we make its
child "double black"
treat it as 2 in black height