1. (15 points) Give tight asymptotic bounds for $T(n)$ in each of the following recurrences (i.e. it’s sufficient to use Θ notation so use the master method whenever you can). You can assume that $T(1) = \Theta(1)$. As part of showing your work, you are required to give the value of “ℓ” and “k”. You are welcome to do the rest in your head if you want but the more you show the more we can give partial credit if you made a mistake.

(a) $T(n) = 3T(n/2) + 10 \ln n + 20n^2$

(b) $T(n) = 2T(n/4) + 5\sqrt{n} + \log_{10} n$

(c) $T(n) = 3T(n/3) + 5n(\log_2 n)^2 + \sqrt{n}$

(d) $T(n) = 2T(2n/3) + n(\ln n)^3 + \frac{1}{2}n^2$

Take each of the four answers above and put each one in one of the blanks below so that the resulting statement is true.

$\text{__________} = \Omega(\text{__________}) = \Omega(\text{__________}) = \Omega(\text{__________})$
2. (5 points) Consider the following list of 3-letter initials

CWA
HWA
JKK =
HCA
CWJ
ACA

Illustrate the execution of radix sort on the above list of initials by showing the list after each of the three phases of counting sort has completed.

3. (10 points) Complete the following divide-and-conquer algorithm to determine if all integers in an array \(a \) are equal. The initial call would be `allEqual(a,0,a.length-1)`. (Yes, there is an easy iterative algorithm for this problem. The goal here is to show me you can complete this divide-and-conquer solution and analyze it).

```java
boolean allEqual(int a[],int p,int r){
    if (p == r)
        return true;
    if (A[p] != A[r])
        return false;
    if (A[p] != A[r])
        return false;
}
```

Write a recurrence relation for your algorithm and then solve it to obtain the worst-case asymptotic time complexity for your algorithm.
4. (10 points) In this problem you will compute the expected number of comparisons made by the following algorithm to determine if a set of \(n \) integers are all equal.

```java
boolean allEqual(int a[]) {
    for (int i = 0; i < a.length-1; i++)
        if (a[i] != a[i+1])
            return false;
    return true;
}
```

Compute the expected number of times the conditional \(a[i] != a[i+1] \) is executed when \(n = 5 \) (i.e. the array contains 5 elements) that are each equally likely to be a 0 or a 1.

Note: The probability that a sequence of \(x \) randomly select integers that are equally likely to be a 0 or 1 are the same is \((1/2)^{x-1}\).

Show your work to enough detail that we can figure out how you computed the answer.
5. You have been commissioned to write a program for the next version of electronic voting software for Dade County Florida. The input will be the number of candidates, d, and an array votes of size v holding the votes in the order they were cast where each vote is an integer from 1 to d. (You can assume that d is typically much smaller than v.) The goal is to determine if there is a candidate with a majority of the votes. If there is a candidate with the majority of the votes, you are to output the indices in votes for the elements that hold a vote for the winning candidate.

(a) (15 points) Describe the algorithm that you would recommend to solve this problem. Analyze the time complexity of your algorithm (as a function of d and v) and very briefly argue why it was the best choice.
(b) (10 points) Consider a model of computation in which you can only access votes by asking if \(v[i] == v[j] \) for any \(i, j \). Using the decision tree lower bound technique give the best lower bound you can on the number of comparisons that must be made to solve this problem under this model of computation when there are 2 candidates and 4 voters. Note that at least 3 votes are needed here for a majority.
6. (20 points) You are given a set S of w words to use in a word list to be used by a spell checker. You are also given an n word document. Your task is to list all words in the document that are not in S. Give an $O(n + w)$ expected time algorithm that only requires space for at most $2w$ references (plus the space needed to store the words in S and the words in the document).

Be sure to analyze the time and space complexity of your solution. You need only include enough detail to argue that your solution satisfies the stated goals.