Practice Problems for Homework 3

1. Prove the best lower bound you can (using the decision tree technique) on the number of distance computations needed to find the closest pair of \(n \) points in the plane under the model of computation in which you cannot directly access the coordinates of a point but instead can just compute the distance between two points.

2. Prove the best lower bound you can (using the decision tree technique) on the time complexity of a comparison based algorithm for the following problem: You are given a sorted array \(A \) (of \(n \) elements) and two elements \(x \) and \(y \) where \(x \leq y \). The algorithm is required to compute how many elements in \(A \) are less than both \(x \) and \(y \), how many elements of \(A \) are between \(x \) and \(y \) (inclusive), and how many elements of \(A \) are bigger than both \(x \) and \(y \). Note that \(x \) and \(y \) are not necessarily in \(A \).

3. Suppose you are given the task to sort one thousand 32-bit keys. You have decided to use radix sort for this problem and want to decide how many bits each radix sort digit. Which is best among having 1 bit per radix sort digit, 4 bits per radix sort digit, 8 bits per radix sort digit or 16 bits per radix sort digit? You are provided with a counting sort procedure with exact time complexity of \(5n + 4k \). Show your work.

4. Give the asymptotically fastest algorithm you can to sort \(n \) integers in the range of 0 to \((n^4)^{-1} \). You should give a very clear and complete high-level description of your algorithm. Be sure to analyze the time complexity of your algorithm as a function of \(n \). You are NOT restricted to use a comparison sorting algorithm (although are welcome to if you want).