Loop Invariants

☐ What are they?

Property — a relationship among the variables of loop
TRUE — (1) after initialization
(2) after every iteration

☐ Why do we care about them?

AVOID BUGS

☐ How do we use them?

(1) After the fact — write code & then find an invariant
(2) Drive the implementation — write an invariant &
then use it to set up the loop

☐ Examples:
Example problem:

\[\text{int } n > 0 \quad \text{int } k > 1 \quad \text{factorsIn} \quad \# \text{ of times } k \text{ is a factor of } n \]

factors \(\text{In}(56, 2) \) is 3 because \(2^4 = 2 \times 2 \times 2 \times 7 \)

3 factors of 2

Observation:

factors \(\text{In}(n, k) = \text{factorsIn} \left(\frac{n}{k}, k \right) + 1 \) if \(n \% k == 0 \)

\[
\begin{align*}
\text{int factorsIn(int n, int k) \{} \\
\text{if (n \% k != 0)} \\
\text{return 0;} \\
\text{else} \\
\text{return 1 + factorsIn(n/k, k);} \\
\};
\end{align*}
\]

\[
\begin{align*}
\text{int factorsIn(int n, int k) \{} \\
\text{int count = 0;} \\
\text{while (n \% k == 0) \{} \\
\text{count++} \\
\text{n = n/k;} \\
\}; \\
\text{return count;} \\
\};
\end{align*}
\]
```c
int factors_in(int n, int k) {
    int count = 0;
    while (n % k == 0) {
        count++;
        n = n / k;
    }
    return count;
}
```

Let N be the original value of N

<table>
<thead>
<tr>
<th>N</th>
<th>n</th>
<th>k</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>56</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>28</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Invariants

1. Initially: \(\text{count} = 0 \)
2. Each iteration preserves it
3. On termination, \(n \% k != 0 \)

Assuming \(n \% k == 0 \):

- \(count++ \)
- \(n / k == k \)
- \(count \times k == N \)
- \(\Rightarrow \text{count has correct final value} \)
Example invariants:

1. \(x == 0 \) \quad \text{On termination, } \ l == n

2. \(\text{lowest} == \text{minimum among } a[0], a[1], \ldots, a[\text{current}-1] \) \quad \text{On termination, } \ \text{current} == a.\text{length}

3. \(\text{sum} == \text{sum of } a[0], a[1], \ldots, a[\text{c}-1] \) \quad \text{On termination, } \ c == a.\text{length}

4. \(n^x == p \) \quad \text{On termination, } \ x == k