Virtual Private Networks

Raj Jain

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Types of VPNs
- When and why VPN?
- VPN Design Issues
- Security Issues
- VPN Examples: PPTP, L2TP, IPSec
- Authentication Servers: RADIUS and DIAMETER
- VPNs using Multiprotocol Label Switching
What is a VPN?

- **Private Network**: Uses leased lines

- **Virtual Private Network**: Uses public Internet
Types of VPNs

- **WAN VPN:** Branch offices
- **Access VPN:** Roaming Users
- **Extranet VPNs:** Suppliers and Customers
Why VPN?

- Reduced telecommunication costs
- Less administration \Rightarrow 60% savings (Forester Res.)
- Less expense for client and more income for ISPs
- Long distance calls replaced by local calls
- Increasing mobility \Rightarrow More remote access
- Increasing collaborations
 \Rightarrow Need networking links with partners
When to VPN?

- More Locations, Longer Distances, Less Bandwidth/site, QoS less critical
 ⇒ VPN more justifiable

- Fewer Locations, Shorter Distances, More Bandwidth/site, QoS more critical
 ⇒ VPN less justifiable
VPN Design Issues

1. Security
2. Address Translation
3. Performance: Throughput, Load balancing (round-robin DNS), fragmentation
4. Bandwidth Management: RSVP
5. Availability: Good performance at all times
6. Scalability: Number of locations/Users
7. Interoperability: Among vendors, ISPs, customers (for extranets) ⇒ Standards Compatibility, With firewall
Design Issues (Cont)

8. Compression: Reduces bandwidth requirements
9. Manageability: SNMP, Browser based, Java based, centralized/distributed
10. Accounting, Auditing, and Alarming
11. Protocol Support: IP, non-IP (IPX)
12. Platform and O/S support: Windows, UNIX, MacOS, HP/Sun/Intel
13. Installation: Changes to desktop or backbone only
14. Legal: Exportability, Foreign Govt Restrictions, Key Management Infrastructure (KMI) initiative ⇒ Need key recovery
Security 101

- Integrity: Received = sent?
- Availability: Legal users should be able to use.
 Ping continuously \Rightarrow No useful work gets done.
- Confidentiality and Privacy:
 No snooping or wiretapping
- Authentication: You are who you say you are.
 A student at Dartmouth posing as a professor canceled the exam.
- Authorization = Access Control
 Only authorized users get to the data
Secret Key Encryption

- Encrypted_Message = Encrypt(Key, Message)
- Message = Decrypt(Key, Encrypted_Message)
- Example: Encrypt = division
- $433 = 48 \times 9 + 1$ (using divisor of 9)
Public Key Encryption

- Invented in 1975 by Diffie and Hellman
- Encrypted_Message = Encrypt(Key1, Message)
- Message = Decrypt(Key2, Encrypted_Message)
Public Key Encryption

- RSA: Encrypted Message = \(m^3 \mod 187 \)
- Message = Encrypted Message\(^{107} \mod 187 \)
- Key1 = \(<3,187> \), Key2 = \(<107,187> \)
- Message = 5
- Encrypted Message = \(5^3 = 125 \)
- Message = \(125^{107} \mod 187 \)
 \[= 125^{(64+32+8+2+1)} \mod 187 \]
 \[= \{(125^{64} \mod 187)(125^{32} \mod 187)\ldots (125^2 \mod 187)(125)\} \mod 187 = 5 \]
- \(125^4 \mod 187 = (125^2 \mod 187)^2 \mod 187 \)
Public Key (Cont)

- One key is private and the other is public
- \[\text{Message} = \text{Decrypt}(\text{Public_Key}, \text{Encrypt}(\text{Private_Key}, \text{Message})) \]
- \[\text{Message} = \text{Decrypt}(\text{Private_Key}, \text{Encrypt}(\text{Public_Key}, \text{Message})) \]
Digital Signature

- Message Digest = Hash(Message)
- Signature = Encrypt(Private_Key, Hash)
- Hash(Message) = Decrypt(Public_Key, Signature)
 ⇒ Authentic
Certificate

- Like driver license or passport
- Digitally signed by Certificate authority (CA) - a trusted organization
- Public keys are distributed with certificates
- CA uses its public key to sign the certificate
 ⇒ Hierarchy of trusted authorities
Confidentiality

- User 1 to User 2:
 - Encrypted_Message = Encrypt(Public_Key2, Encrypt(Private_Key1, Message))
 - Message = Decrypt(Public_Key1, Decrypt(Private_Key2, Encrypted_Message))
 ⇒ Authentic and Private
Bastions overlook critical areas of defense, usually having stronger walls.

Inside users log on the Bastion Host and use outside services.

Later they pull the results inside.

One point of entry. Easier to manage security.
Proxy Servers

- Specialized server programs on bastion host
- Take user's request and forward them to real servers
- Take server's responses and forward them to users
- Enforce site security policy
 \[\Rightarrow\] May refuse certain requests.
- Also known as application-level gateways
- With special "Proxy client" programs, proxy servers are almost transparent
VPN Security Issues

- Authentication methods supported
- Encryption methods supported
- Key Management
- Data stream filtering for viruses, JAVA, active X
- Supported certificate authorities (X.509, Entrust, VeriSign)
- Encryption Layer: Datalink, network, session, application. Higher Layer ⇒ More granular
- Granularity of Security: Departmental level, Application level, Role-based
Private Addresses

- 32-bit Address \Rightarrow 4 Billion addresses max
- Subnetting \Rightarrow Limit is much lower
- Shortage of IP address \Rightarrow Private addresses
- Frequent ISP changes \Rightarrow Private address
- Private \Rightarrow Not usable on public Internet
- RFC 1918 lists such addresses for private use
- Prefix = 10/8, 172.16/12, 192.168/16
- Example: 10.207.37.234
- NAT = Network Address Translation
 - Like Dynamic Host Configuration Protocol (DHCP)
- IP Gateway: Like Firewall
- Tunneling: Encapsulation
Tunnel

- Tunnel = Encapsulation
- Used whenever some feature is not supported in some part of the network, e.g., multicasting, mobile IP
VPN Tunneling Protocols

- GRE: Generic Routing Encapsulation (RFC 1701/2)
- PPTP: Point-to-point Tunneling Protocol
- L2F: Layer 2 forwarding
- L2TP: Layer 2 Tunneling protocol
- ATMP: Ascend Tunnel Management Protocol
- DLSW: Data Link Switching (SNA over IP)
- IPSec: Secure IP
- Mobile IP: For Mobile users
- **Generic Routing Encapsulation (RFC 1701/1702)**
- **Generic ⇒ X over Y for any X or Y**
- **Optional Checksum, Loose/strict Source Routing, Key**
- **Key is used to authenticate the source**
- **Over IPv4, GRE packets use a protocol type of 47**
- **Allows router visibility into application-level header**
- **Restricted to a single provider network ⇒ end-to-end**

<table>
<thead>
<tr>
<th>Flags</th>
<th>Ver</th>
<th>Prot Type</th>
<th>Checksum</th>
<th>Offset</th>
<th>Key</th>
<th>Seq #</th>
<th>Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>12b</td>
<td>3b</td>
<td>16b</td>
<td>16b</td>
<td>16b</td>
<td>32b</td>
<td>32b</td>
<td>n32b</td>
</tr>
</tbody>
</table>

The Ohio State University
PPTP = Point-to-point Tunneling Protocol

Developed jointly by Microsoft, Ascend, USR, 3Com and ECI Telematics

PPTP server for NT4 and clients for NT/95/98

MAC, WFW, Win 3.1 clients from Network Telesystems (nts.com)
PPTP with ISP Support

- PPTP can be implemented at Client or at NAS
- With ISP Support: Also known as Compulsory Tunnel
- W/O ISP Support: Voluntary Tunnels
PPTP Packets

Private Network → PPTP Server → Internet → Network Access Server → Client

Public IP Addressing:
- IP
- GRE
- PPP
- IP/IPX/NetBEUI

Internal IP Addressing:
- IP/IPX/NetBEUI

Data

PPP

IP

Encrypted
L2TP

- Layer 2 Tunneling Protocol
- L2F = Layer 2 Forwarding (From CISCO)
- L2TP = L2F + PPTP
 Combines the best features of L2F and PPTP
- Will be implemented in NT5
- Easy upgrade from L2F or PPTP
- Allows PPP frames to be sent over non-IP (Frame relay, ATM) networks also (PPTP works on IP only)
- Allows multiple (different QoS) tunnels between the same end-points. Better header compression.
 Supports flow control
IPSec

- Secure IP: A series of proposals from IETF
- Separate Authentication and privacy
- Authentication Header (AH) ensures data integrity and authenticity
- Encapsulating Security Protocol (ESP) ensures privacy and integrity
IPSec (Cont)

- Two Modes: Tunnel mode, Transport mode
- Tunnel Mode \Rightarrow Encryption at IP level
- Supports a variety of encryption algorithms
- Better suited for WAN VPNs (vs Access VPNs)
- Little interest from Microsoft (vs L2TP)
- Most IPSec implementations support machine (vs user) certificates \Rightarrow Any user can use the tunnel
- Needs more time for standardization than L2TP
SOCKS

- Developed by David Koblas in 1990. Backed by NEC
- Made public and adopted by IETF Authenticated Firewall Traversal (AFT) working group
- Current version v5 in RFC 1928
- Session layer proxy
- Can be configured to proxy any number of TCP or UDP ports
- Provides authentication, integrity, privacy
- Can provide address translation
- Proxy ⇒ Slower performance
- Desktop-to-Server ⇒ Not suitable for extranets
Application Level Security

- Secure HTTP
- Secure MIME
- Secure Electronic Transaction (SET)
- Private Communications Technology (PCT)
Remote Authentication Dial-In User Service

Central point for Authorization, Accounting, and Auditing data ⇒ AAA server

Network Access servers get authentication info from RADIUS servers

Allows RADIUS Proxy Servers ⇒ ISP roaming alliances
DIAMETER

- Enhanced RADIUS
- Light weight
- Can use both UDP and TCP
- Servers can send unsolicited messages to Clients
 ⇒ Increases the set of applications
- Support for vendor specific Attribute-Value-Pairs (AVPs) and commands
- Authentication and privacy for policy messages
Quality of Service (QoS)

- Resource Reservation Protocol (RSVP) allows clients to reserve bandwidth
- Need routers with proper scheduling: IP Precedence, priority queueing, Weighted Fair Queueing (WFQ)
- All routers may not support RSVP
- Even more difficult if multiple ISPs
VPN Support with MPLS

- Multiprotocol Label Switching
- Allows packets to be switched using labels (tags) ⇒ Creates connections across a network
- Labels contain Class of Service

![Diagram of VPN support with MPLS]

- Label Switch/Router
- ISP
- Private
- Unlabeled Packet
- Labeled Packet
- Unlabeled Packet

Label: 20b
CoS: 3b
SI: 1b
TTL: 8b
VPN allows secure communication on the Internet

Three types: WAN, Access, Extranet

Key issues: address translation, security, performance

Layer 2 (PPTP, L2TP), Layer 3 (IPSec), Layer 5 (SOCKS), Layer 7 (Application level) VPNs

RADIUS allows centralized authentication server

QoS is still an issue ⇒ MPLS
For a detailed list of references, see
http://www.cis.ohio-state.edu/~jain/refs/refs VPN.htm
Acronyms

- AAA Authorization, Accounting, and Auditing
- AFT Automatic Firewall Traversal
- AH Authentication Header
- ATMP Ascend Tunnel Management Protocol
- AVP Attribute-Value-Pair
- CA Certification Authority
- CAST Carlisle Adams and Stafford Tavares
- CBC Cipher Block Chaining
- CERT Computer Emergency Response Team
- CFB Cipher feedback
- CHAP Challenge Handshake Authentication Protocol
- CRC Cyclic Redundancy Check
- DES Data Encryption Standard
- DHCP Dynamic Host Configuration Protocol
- DLSW Data Link Switching (SNA over IP)
- DMZ Demilitarized Zone
- DNS Domain Name Service
- DSA Digital Signature Authorization
- DTS Digital Timestamp Service
- EAP Extensible Authentication Protocol
- ECB Electronic code blocks
- ESP Encapsulating Security Protocol
- GRE Generic Routing Encapsulation
- HTTP Hypertext Transfer Protocol
- IDEA International Data Encryption Standard
- IETF Internet Engineering Task Force
- IKE Internet Key Exchange
- IMPs Interface Message Processor
- IPSec Internet Protocol Security
- IPX Netware IP
- IPv4 IP version 4
- ISAKMP Association Key Management Protocol
- ISP Internet Service Provider
- IVPN IP VPN
- JAVA Just Another Vague Acronym
- KMI Key Management Infrastructure
- L2F Layer 2 Forwarding Protocol
- L2TP Layer 2 Tunneling protocol
- LDAP Lightweight Directory Protocol
- MAC Message Authentication Code
- MD2 Message Digest 2
- MD4 Message Digest 4
- MD5 Message Digest 5
- MPLS Multiprotocol Label Switching
- MPPE Microsoft Point to Point Encryption
- MS-CHAP Microsoft CHAP
- NAS Network Access Server
- NAT Network Address Translation
- NBS National Bureau of Standards
- NDS Netware Directory Service
- NIST National Institute of Science and Technology
- NSA National Security Agency
- NT5 Windows NT 5.0
- OFB Output feedback
- OTP One-Time Password
- PAP Password Authentication Protocol
- PIX Private Internet Exchange
- PKI Public key infrastructure
- PPP Point-to-Point protocol
- PPTP Point-to-point Tunneling Protocol
- RADIUS Remote Authentication Dial-in User Service
- RAS Remote Access Services
- RC2 Ron's Code 2
- RC4 Ron's Code 4
- RC5 Ron's Code 5
- RFC Request for Comment
- RSVP Resource Reservation Protocol
- S/WAN Secure Wide Area Network
- SHA Secure Hash Algorithm
- SKIP Simple Key Exchange Internet Protocol
- SNA System Network Architecture
- SNMP Simple Network Management Protocol
- TACACS Terminal Access Controller Access System
- TCP Transport Control Protocol
- TLS Transport Level Security
- UDP User Datagram Protocol
- VPDN Virtual Private Data Network
- VPN Virtual Private Networks
- WAN Wide Area Network
- WFQ Weighted Fair Queueing
- WFW Windows for Workgroup
- WRED Weighted Random Early Drop
- XTACACS Extended TACACS