Quality of Service In Data Networks: Problems, Solutions, and Issues

Raj Jain, Panel Chair

Raj Jain is now at Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- ATM QoS and Issues
- Integrated services/RSVP and Issues
- Differentiated Services and Issues
- QoS using MPLS
- End-to-end QoS

This is an update to the May’98 talk
http://www.cis.ohio-state.edu/~jain/talks/ipqos.htm
QoS Triangle

- Senders want to send traffic any time with high load, high burstiness
- Receivers expect low delay and high throughput
- Since links are expensive, providers want to minimize the infrastructure
- If one of the three gives in \(\Rightarrow \) no problem
What is QoS?

- Predictable Quality: Throughput, Delay, Loss, Delay jitter, Error rate
- Opposite of best effort = Random quality
- Mechanisms:
 - Capacity Planning
 - Classification, Queueing, Scheduling, buffer management
 - QoS based path determination, Route pinning
 - Shaping, policing, admission control
 - Signaling
ATM Service Categories

- **CBR**: Throughput, delay, delay variation
- **rt-VBR**: Throughput, delay, delay variation
- **nrt-VBR**: Throughput
- **UBR**: No Guarantees
- **GFR**: Minimum Throughput
- ATM also has QoS-based routing (PNNI)
ATM QoS

Today ATM

Too much too soon
ATM QoS: Issues

- Can’t easily aggregate QoS: $VP = \Sigma VCs$
- Can’t easily specify QoS: What is the CDV required for a movie?
- Signaling too complex \Rightarrow Need Lightweight Signaling
- Need Heterogeneous Point-to-Multipoint: Variegated VCs
- Need QoS Renegotiation
- Need Group Address
- Need priority or weight among VCs to map DiffServ and 802.1D
Integrated Services

- Best Effort Service: Like UBR.
- Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. Like nrt-VBR or UBR w MCR
- Guaranteed Service: rt-VBR
 - Firm bound on data throughput and delay.
 - Delay jitter or average delay not guaranteed or minimized.
 - Every element along the path must provide delay bound.
 - Is not always implementable, e.g., Shared Ethernet.
 - Like CBR or rt-VBR
RSVP

- Resource ReSerVation Protocol
- Internet signaling protocol
- Carries resource reservation requests through the network including traffic specs, QoS specs, network resource availability
- Sets up reservations at each hop

Sender Traffic Spec Network Traffic Spec QoS Spec Receiver

Available Resources AdSpec
Before
After
Problems with RSVP and Integrated Services

- Complexity in routers: packet classification, scheduling
- Scalable in number of receivers per flow but Per-Flow State: \(O(n) \) \(\Rightarrow \) Not scalable with # of flows. Number of flows in the backbone may be large. \(\Rightarrow \) Suitable for small private networks
- Need a concept of “Virtual Paths” or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations? Support for accounting and security. \(\Rightarrow \) RSVP admission policy (rap) working group.
Problems (Cont)

- Receiver Based:
 Need sender control/notifications in some cases. Which receiver pays for shared part of the tree?
- Soft State: Need route/path pinning (stability). Limit number of changes during a session.
- RSVP does not have negotiation and backtracking
- Throughput and delay guarantees require support of lower layers. Shared Ethernet \Rightarrow IP can’t do GS or CLS. Need switched full-duplex LANs.
- Can’t easily do RSVP on ATM either
- Most of these arguments also apply to integrated services.
Differentiated Services

<table>
<thead>
<tr>
<th>Ver</th>
<th>Hdr Len</th>
<th>Precedence</th>
<th>ToS</th>
<th>Unused</th>
<th>Tot Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b</td>
<td>4b</td>
<td>3b</td>
<td>4b</td>
<td>1b</td>
<td>16b</td>
</tr>
</tbody>
</table>

- IPv4: 3-bit precedence + 4-bit ToS
- OSPF and integrated IS-IS can compute paths for each ToS
- Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- DS working group formed February 1998
- Charter: Define ds byte (IPv4 ToS field)
DiffServ Concepts

- Micro-flow = A single application-to-application flow
- Traffic Conditioners: Meters (token bucket), Markers (tag), Shapers (delay), Droppers (drop)
- Behavior Aggregate (BA) Classifier: Based on DS byte only
- Multi-field (MF) Classifiers: Based on IP addresses, ports, DS-byte, etc..

![Diagram showing the flow of packets through Meter, Classifier, Marker, and Shaper/Dropper]
Diff-Serv Concepts (Cont)

- Service: Offered by the protocol layer
 - Application: Mail, FTP, WWW, Video, ...
 - Transport: Delivery, Express Delivery, ...
 Best effort, controlled load, guaranteed service
 - DS group will not develop services
 They will standardize “Per-Hop Behaviors”
Per-hop Behaviors

- Externally Observable Forwarding Behavior
- x% of link bandwidth
- Minimum x% and fair share of excess bandwidth
- Priority relative to other PHBs
- PHB Groups: Related PHBs. PHBs in the group share common constraints, e.g., loss priority, relative delay
Expedited Forwarding

- Also known as “Premium Service”
- Virtual leased line
- Similar to CBR
- Guaranteed minimum service rate
- Policed: Arrival rate < Minimum Service Rate
 - \(\Rightarrow \) Highest data priority (if priority queueing)
- Code point: 101 110
Assured Forwarding

- PHB Group
- Four Classes: No particular ordering
- Three drop preference per class
Assured Forwarding (Cont)

- DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.

- Similar to nrt-VBR/ABR/GFR

- Code Points:

<table>
<thead>
<tr>
<th>Drop Prec.</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>010 000</td>
<td>011 000</td>
<td>100 000</td>
<td>101 000</td>
</tr>
<tr>
<td>Medium</td>
<td>010 010</td>
<td>011 010</td>
<td>100 010</td>
<td>101 010</td>
</tr>
<tr>
<td>High</td>
<td>010 100</td>
<td>011 100</td>
<td>100 100</td>
<td>101 100</td>
</tr>
</tbody>
</table>

- Avoids 11x000 (used for network control)
AF Simulation Results

1. W/O DPs, TCP is punished for good behaviour
2. Fairness is also poor.
3. Three DPs give the same perf for TCP as two DPs
 Reason: TCP does not distinguish between loss of packets of different drop precedences

On Drop Preferences

- We have two dimensions of control
 - Classes = Queues
 - Drop Preferences = Right to enter the queue
- Classes \implies Directly controls bandwidth allocation
Drop Preferences (Cont)

- DPs \(\Rightarrow\) Controls buffer allocation
 \(\Rightarrow\) Indirectly affects bandwidth allocation
 - Depends upon the arrival pattern
 \(\Rightarrow\) Random \(\Rightarrow\) Not Reliable

- Given a limited number of PHB’s, it is better to have more classes than more DPs
Problems with DiffServ

- **per-hop** ⇒ Need at every hop
 One non-DiffServ hop can spoil all QoS

- **End-to-end ≠ Σ per-Hop**
 Designing end-to-end services with weighted guarantees at individual hops is difficult.
 Only EF will work.

- Designed for **static** Service Level Agreements (SLAs)
 Both the network topology and traffic are highly dynamic.

- **Multicast ⇒ Difficult to provision**
 Dynamic multicast membership ⇒ Dynamic SLAs?
DiffServ Problems (Cont)

- DiffServ is unidirectional \(\Rightarrow\) No receiver control
- Modified DS field \(\Rightarrow\) Theft and Denial of service. Ingress node should ensure.
- How to ensure resource availability inside the network?
- QoS is for the aggregate not per-destination. Multi-campus enterprises need inter-campus QoS.
DiffServ Problems (Cont)

- QoS is for the aggregate not micro-flows. Not intended/useful for end users. Only ISPs.
 - Large number of short flows are better handled by aggregates.
 - Long flows (voice and video sessions) need per-flow guarantees.
 - High-bandwidth flows (1 Mbps video) need per-flow guarantees.

- All IETF approaches are open loop control ⇒ Drop Closed loop control ⇒ Wait at source Data prefers waiting ⇒ Feedback
DiffServ Problems (Cont)

- Guarantees \Rightarrow Stability of paths
 \Rightarrow Connections (hard or soft)
Need route pinning or connections.
Multiprotocol Label Switching

- Entry “label switch router (LSR)” attaches a label to the packet based on the route.
- Other LSRs switch packets based on labels. Do not need to look inside ⇒ Fast.
- Labels have local significance ⇒ Different label at each hop (similar to VC #)
- Exit LSR strips off the label.
Traffic Engineering Using MPLS

- Traffic Engineering = Performance Optimization
 = Efficient resource allocation, Path splitting
 ⇒ Maximum throughput, Min delay, min loss
 ⇒ Quality of service

- In MPLS networks: “Traffic Trunks” = SVCs
 Traffic trunks are routable entities like VCs

- Multiple trunks can be used in parallel to the same egress.

- Each traffic trunk can have a set of associated characteristics, e.g., priority, preemption, policing, overbooking
Flows, Trunks, LSPs, and Links

- Label Switched Path (LSP): All packets with the same label
- Trunk: Same Label+Exp
- Flow: Same MPLS+IP+TCP headers

<table>
<thead>
<tr>
<th>DL</th>
<th>Label</th>
<th>Exp</th>
<th>SI</th>
<th>TTL</th>
<th>IP</th>
<th>TCP</th>
</tr>
</thead>
</table>

- Flows
- Trunk
- LSP
- Link
MPLS Simulation Results

- Total network throughput improves significantly with proper traffic engineering
- Congestion-unresponsive flows affect congestion-responsive flows
 - Separate trunks for different types of flows
- Trunks should be end-to-end
 - Trunk + No Trunk = No Trunk

Bandwidth Broker

- Repository of policy database. Includes authentication
- Users request bandwidth from BB
- BB sends authorizations to leaf/border routers
 Tells what to mark.
- Ideally, need to account for bandwidth usage along the path
- BB allocates only boundary or bottleneck
IEEE 802.1D Model

<table>
<thead>
<tr>
<th>Dest Addr</th>
<th>Src Addr</th>
<th>Tag Prot ID</th>
<th>Pri</th>
<th>CFI</th>
<th>VLAN ID</th>
</tr>
</thead>
</table>

802.1Q header

CFI = Canonical Format Indicator (Source Routing)

- **Up to eight priorities**: Strict.
 - 1 Background
 - 2 Spare
 - 0 Best Effort
 - 3 Excellent Effort
 - 4 Control load
 - 5 Video (Less than 100 ms latency and jitter)
 - 6 Voice (Less than 10 ms latency and jitter)
 - 7 Network Control
End-to-end View

- ATM/PPP backbone, Switched LANs/PPP in Stub
- IntServ/RSVP, 802.1D, MPLS in Stub networks
- DiffServ, ATM, MPLS in the core
Summary

- ATM: CBR, VBR, ABR, UBR, GFR
- Integrated Services: GS = rtVBR, CLS = nrt-VBR
- Signaling protocol: RSVP
- Differentiated Services will use the DS byte
- MPLS allows traffic engineering and is most promising
- 802.1D allows priority
References

- For a detailed list of references see: refs/ipqs_ref.htm
- Additional papers and presentations on QoS are at: http://www.cse.ohio-state.edu/~jain/
Thank You!