OCARNet: Ohio Computing and Communications ATM Research Network

Raj Jain and D.K. Panda, The Ohio State University
R.J. Clark and Y. Pan, University of Dayton
S.J. Chapin, Kent State University
J. Sang, B.A. Blake, and C.H. Lin, Cleveland State University
A. Stutz, Ohio Supercomputer Center
G. Wallis, OARnet

New Address: Raj Jain, Washington University in Saint Louis,
 jain@cse.wustl.edu, http://www.cse.wustl.edu/~jain
Overview

- What is ATM?
- Our Proposal
- Activities in Other States
Asynchronous Transfer Mode

- ATM is a new computer networking technology that allows video, audio, and data integration at a high speed.
- Today’s Internet provides data transfer.
 Tomorrow ATM technology will allow multimedia and video conferencing by providing service guarantees and high speed.
- Today’s Internet has 1.5 Mbps and 45 Mbps links.
 ATM provides 155 Mbps, 622 Mbps, 2048 Mbps and up.
 (factor of 3 to 1300 faster)
- ATM ⇒ Do not need separate networks for computing, entertainment (cable), and voice (telephone)
Applications of ATM

- High-speed multimedia communication
- Distance learning
- Visualization
- Healthcare: Telemedicine, Remote Diagnosis
 Remote access to health database
- Collaboration: Shared-screen systems
- Telepresence: Virtual proximity. Can control remote camera.
 - Real estate purchasers can drive down the virtual city
- High-Performance Computing
ATM Research Opportunities

- All computer companies, telephone companies, and cable companies are developing ATM products and services
- Federal government is spending a large part of its High Performance Computing and Communications (HPCC) budget on networking research and particularly on ATM research
- ATM is key in plans for National Information Infrastructure (NII) and Global Information Infrastructure (GII)
- ATM \Rightarrow New Style of networking
 \Rightarrow New Styles of Computing
 Widely Distributed Computer Systems
 Networks of Workstations (NoW)
Proposed Research Projects

1. Performance Benchmarking Lab
2. Communications Libraries for Networks of Workstations
3. Applications of Networks of Workstations
4. Heterogeneous Operating Systems Software
5. Circuit Allocation and Management
6. Inter-Operability and Network Management
Layered View

Applications (3,4)

Heterogeneous Operating Systems Software (4)

Communications Libraries (2)

Circuit Allocation (5)

Inter-Operability (6)

Performance Benchmarking (1)

Interaction
Interaction Among Partners

Cleveland State Univ.

Kent State Univ.

Univ. of Dayton

Ohio State Univ.

Ohio Supercomp. Center

OARnet
OCARnet

Ohio State Univ

Cleveland State Univ
To vBNS/MCI
45 Mbps

To NASA

Kent State Univ

Ohio Supercomputer Center

Univ of Cincinnati

155 Mbps

Kent

WAN Switches

Workgroup Switches

Univ of Dayton

Dayton

Univ of Toledo

Toledo

Univ of Cincinnati

Cincinnati

Columbus

1.5 Mbps

622 Mbps

622 Mbps

155 Mbps

45 Mbps

1.5 Mbps

1.5 Mbps

1.5 Mbps

155 Mbps

Wright State Univ

Univ of Dayton

TovBNS/MCI

To NASA

Univ of Toledo

To vBNS/MCI

45 Mbps

To NASA

Kent State Univ

Ohio Supercomputer Center

Univ of Cincinnati

155 Mbps

Kent

WAN Switches

Workgroup Switches

Univ of Cincinnati

Cincinnati

Columbus

1.5 Mbps

622 Mbps

622 Mbps

155 Mbps

45 Mbps

1.5 Mbps

1.5 Mbps

155 Mbps

Wright State Univ

Univ of Dayton

To vBNS/MCI

45 Mbps

To NASA

Kent State Univ

Ohio Supercomputer Center

Univ of Cincinnati

155 Mbps

Kent

WAN Switches

Workgroup Switches

Univ of Cincinnati

Cincinnati

Columbus
ATM Activities in Other States

- Georgia Research Alliance: Georgia Tech, GSU, Emory (Medicine), Georgia Medical College, BellSouth
- North Carolina:
 - North Carolina Information Highway (NCIH)
 - Connects all state colleges and universities and several state agencies
- New York: NYSERNET (Syracuse University)
- California: BAGNET (Bay Area Gigabit Network)
- Missouri: Washington University, St. Louis (Medical School and Computer Science)
Location of switches in 1994
Ref: IEEE Network, November/December 1994
Georgia

- Georgia Research Alliance: Georgia Tech, GSU, Emory (Medicine), Georgia Medical College, BellSouth
- Georgia Center for Advanced Telecommunications Technology (GCATT)
 - Multi-site ATM/SONET network
 - Chaired Faculty positions in Telecommunications
- Being extended to “Ring around Georgia”
 - A statewide ATM backbone to promote economic development
 - To understand the needs of users
 - To bring advanced technology to all communities
Potential For Growth in Ohio

- CompuServe’s worldwide headquarters are in Columbus
- Litel Communications Inc. (LCI) headquartered in Columbus
- Ameritech
- Garrison Walters of OBR (in review of CS PhD programs) to Provosts and Graduate Deans:
 “Increased investment in computer science is warranted; there are research areas in which Ohio could be highly competitive.”
Related Activity: CATNet

- Columbus ATM Network
- Lead by Industry and Technology Council of Columbus
- Technology leadership provided by OSU
- Fiber links provided by Metricom
- Starting with 8 major Columbus companies
 - Ameritech
 - OCLC
Potential Partners in Ohio

OCARNet = Beginnings of a state-wide network

- Kent State University (Liquid Crystal Institute)
 - Paul Farrell, Mike Lee (Visualization)
- Case Western Reserve: Kumar (Distributed simulation)
- University of Cincinnati: S. Pande (Parallelizing compilers)
 - D. Hensgen (Heterogeneous Processing)
- Ohio University: S. Ostermann (Networking)
- Wright State University: J. Jean (Parallel processing)
- University of Akron: Fadi Sibai (Parallel Networks)
- University of Toledo: Douglas A. Smith (Parallel Perturbations)
- Youngstown State: John Buoni (Parallel Algorithms)
Summary

1. Potential for Excellence:
 OSU is already leading world-class ATM research

2. Leverage:
 Potential funding from HPCC, ARPA, DOE, NSF, and Industry

3. Research: Fundamental research in ATM, distributed computing, and distributed applications

4. Potential for Success:
 Researchers and service provider (OARnet)

5. Appropriateness: General purpose equipment, multiple uses

6. Potential for collaboration with industry (CATNet) and other universities

7. Potential for Economic Growth: Leadership on the information superhighway is critical to the future growth of any state