Traffic Management over Satellite ATM Networks:
A Status Report

Raj Jain

New Address: Raj Jain, Washington University in Saint Louis,
jain@cse.wustl.edu, http://www.cse.wustl.edu/~jain

TIA/CIS Meeting, January 13, 1998
Overview

- Traffic Management for ATM over Satellite Document
- New NASA Project on Traffic Management
- Our Recent Studies
- December TM Meeting
ATM over Satellite
Document

- Scope:
 - OSU and Non-OSU Studies
 - ABR, UBR, GFR
 - TCP and non-TCP Traffic
 - LEO, MEO, and GEO
- Joint Work with NASA Lewis (Tom vonDeak)
Table of Contents

- Introduction: Challenges
- ABR Service over Satellites
- UBR Service over Satellites
- TCP/IP over ATM Over Satellites
- Conclusions
Introduction: Challenges

- Delay: Long-delay, Delay Variation (e.g., Doppler, orbital movement, handovers, ...)
- Errors
- Bandwidth Limitations
- Resource Limitations:
 - On-board processing and memory
- Special Access Methods: DAMA, Beam Hopping
ABR Over Satellites

- Switch Algorithms
- Parameter Selection
- Buffer Sizing
- Bursty WWW Sources
- ABR with VBR Video Background
- Point-to-Multipoint Connections
- Multipoint-to-point Connections
- Virtual Source Virtual Destination
- Features for Long Delay Paths: BECN
UBR Over Satellites

- Buffer Sizing
- Drop Policies
- UBR+
- Guaranteed Rate
- Guaranteed Frame Rate Service
- Voice over UBR+?
TCP Over ATM over Satellites

- TCP over ABR
 - Buffer Sizing
 - Worst case Behavior
- TCP over UBR
- TCP Enhancements: Slow Start, Fast Retransmit Recovery, New Reno, Selective Acknowledgement
- Effect on Long-delay paths
TCP/IP over UBR

- New project at OSU sponsored by NASA Lewis Research Center
- Very comprehensive study of TCP/IP over UBR: existing mechanisms, new mechanisms, parameter selection
- Includes TCP mechanisms, end systems, switches, buffers, traffic patterns, and UBR enhancements.
- Time Frame: December 1, 1997- November 30, 98
Policies

TCP End
System Policies

TCP over UBR

Vanilla TCP: Slow Start and Congestion Avoidance
TCP Reno: Fast Retransmit and Recovery
Selective Acknowledgments

Minimum Rate Guarantees: per-VC queuing
Per-VC Accounting: Selective Drop/FBA

Early Packet Discard
Tail Drop

ATM Switch
Drop Policies
Policies

<table>
<thead>
<tr>
<th>Switch Policies</th>
<th>End-System Policies</th>
<th>No FRR</th>
<th>FRR</th>
<th>New Reno</th>
<th>SACK + New Reno</th>
</tr>
</thead>
<tbody>
<tr>
<td>No EPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain EPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPD</td>
<td>Selective Drop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair Buffer Allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Issues

1. Analyze Standard Switch and End-system Policies
2. Design Switch Drop Policies
3. Quantify Buffer Requirements in Switches
4. UBR with VBR Background
5. Performance of Bursty Sources
6. Changes to TCP Congestion Control
7. Optimizing the Performance of SACK TCP
Our Recent Studies

- Multipoint-to-point connections
- Virtual Source/Virtual Destination
- Guaranteed Frame Rate Service
- Queue Control Functions
Multipoint-to-Point VCs

- More than one concurrent sender
- Traffic at root
 \[= \Sigma \text{traffic originating from leaves}\]
- Source-based fairness:
 \[\text{N-to-one connection } = \text{N one-to-one connections}\]
 \[\implies \text{max-min fairness among sources}\]
Virtual Source / Virtual Destination (VS / VD)

- Segments the end-to-end ABR control loop.
- Coupling between loops is implementation specific.
- VS/VD can help in buffer management across the network.
- ABR switches separated by non-ATM network could also implement VS/VD.
Guaranteed Frame Rate (GFR)

- UBR with minimum cell rate (MCR)
 ⇒ UBR+

- Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have CLP = 0 or CLP = 1
 - All frames below MCR are given CLP = 0 service.
 All frames above MCR are given best effort (CLP = 1) service.
Queue Control Function

- Most ABR switch algorithms allocate 90 to 95% of available capacity to active flows.
- The % allocated can be a function of the queue length.
- Target rate = \(f(q) \times fn\{\text{current load, link rate, Higher priority (CBR, VBR) load}\} \)
 \(f(q) \) is the queue control function.
- Several different functions were compared to find the simplest most effective function.
December TM Meeting

- Guaranteed Frame Rate:
 New conformance definition
- TCP over ABR
- ABR Policing
- Multipoint-to-point
- Virtual Source / Virtual Destination
- Queue Control Functions
- Plans for TM 5.0: December 1998
TM Joint Meetings

- Test: Performance Testing
- API: ABR
- Network Management: Traffic Profiles, Accumulative QoS Parameters
- RMOA: Requirements for Video, Shaping for MPEG2
- RBB: ADSL dual latency
- VTOA: Effect of Buffering VBR Voice
- CS_RA: ADSL Signaling, VC Merging, Soft Connection Reroute
Summary

- Document on TM on Satellite ATM Links
- New NASA project on TCP/IP over UBR
- Recent OSU work on Multipoint-to-point, VS/VD, Queue control, GFR
- TM group is working on GFR and TM5.0
Our Contributions and Papers

- All our contributions and papers are on-line: http://www.cis.ohio-state.edu/~jain/
 See “Recent Hot Papers” for tutorials.

Contributions (Cont)

