Issues in Traffic Management on Satellite ATM Networks

Raj Jain

Raj Jain is now at Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Why ATM?
ATM Service Categories: ABR and UBR
Binary and Explicit Feedback
ABR Vs UBR
4 Ways to improve ABR over Satellites
4 Ways to improve UBR over Satellites
Why ATM?

- ATM vs IP: Key Distinctions
 - Traffic Management: Explicit Rate vs Loss based
 - Signaling: Coming to IP in the form of RSVP
 - PNNI: QoS based routing
 - Switching: Coming soon to IP
 - Cells: Fixed size or small size is not important
Service Categories

Standby

Joy Riders

Guaranteed

Confirmed
Service Categories

- ABR (Available bit rate):
 Source follows network feedback.
 Max throughput with minimum loss.

- UBR (Unspecified bit rate):
 User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.

- CBR (Constant bit rate):
 User declares required rate.
 Throughput, delay and delay variation guaranteed.

- VBR (Variable bit rate):
 Declare avg and max rate.
 - rt-VBR (Real-time): Conferencing.
 Max delay guaranteed.
 - nrt-VBR (non-real time): Stored video.
Our Goal

- Ensure that the new ATM Forum TM 4.0/5.0 specs are “Satellite-friendly”
- There are no parameters or requirement that will perform badly in a long-delay satellite environment
- Users can use paths going through satellite links without requiring special equipment
- Develop optimal solutions for satellite networks

This work is sponsored by NASA Lewis Research Center.
DECbit scheme in many standards since 1986.

Forward explicit congestion notification (FECN) in Frame relay

Explicit forward congestion indicator (EFCI) set to 0 at source. Congested switches set EFCI to 1

Every nth cell, destination sends an resource management (RM) cell to the source
The Explicit Rate ABR

- Proposed in July 1994
- Sources send one RM cell every n cells
- The RM cells contain “Explicit rate”
- Destination returns the RM cell to the source
- The switches adjust the rate down
- Source adjusts to the specified rate
Go
30 km East
35 km South

Go left
Why Explicit Rate Indication?

- Longer-distance networks
 ⇒ Can’t afford too many round-trips
 ⇒ More information is better

- Rate-based control
 ⇒ Queue length = ΔRate × ΔTime
 ⇒ Time is more critical than with windows
4 Ways to Improve ABR over Satellite

1. Increase the limit on the number of outstanding cells before decreasing ⇒ Large TBE
 The size of was increased from 8 bit to 24 bit to accommodate satellite paths.

2. Use larger increase factor
 ⇒ RIF=1 ⇒ Fast transient Response

3. Implement backward congestion notification (BECN)

4. Implement Virtual Source/Virtual Destination
Virtual source/virtual destinations (VS/VD) follow all notification/control rules.

Can be hop-by-hop.

Virtual dest/sources maintain per-VC queues.
VS/VD: Results

- Without VS/VD:

- With VSVD:

- With VSVD, the buffering is proportional to the delay-bandwidth of the previous loop
 ⇒ Good for satellite networks
Internet Protocols over ATM

- ATM Forum has designed ABR service for data
- UBR service provides no feedback or guarantees
- Internet Engineering Task Force (IETF) prefers UBR for TCP
ABR or UBR?

- Intelligent transport or not?
ABR vs UBR

ABR
- Queue in the source
- Pushes congestion to edges
- Good if end-to-end ATM
- Fair
- Good for the provider

UBR
- Queue in the network
- No backpressure
- Same end-to-end or backbone
- Generally unfair
- Simple for user
Improving Performance of TCP over UBR

TCP End System Policies

ATM Switch Drop Policies

TCP over UBR

Vanilla TCP: Slow Start and Congestion Avoidance

TCP Reno: Fast Retransmit and Recovery

Selective Acknowledgments

Minimum Rate Guarantees: per-VC queuing

Per-VC Accounting: Selective Drop/FBA

Early Packet Discard

Tail Drop
Policies

<table>
<thead>
<tr>
<th>Switch Policies</th>
<th>End-System Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No FRR</td>
</tr>
<tr>
<td>No EPD</td>
<td></td>
</tr>
<tr>
<td>Plain EPD</td>
<td></td>
</tr>
<tr>
<td>EPD</td>
<td></td>
</tr>
<tr>
<td>Selective Drop</td>
<td></td>
</tr>
<tr>
<td>Fair Buffer Allocation</td>
<td></td>
</tr>
</tbody>
</table>
Policies: Results

- In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.

- In satellite networks, end-system improvements have more impact than switch-based improvements.

- FRR hurts in satellite networks.

- Fairness depends upon the switch drop policies and not on end-system policies.
In Satellite networks:

- SACK helps significantly
- Switch-based improvements have relatively less impact than end-system improvements
- Fairness is not affected by SACK

In LANs:

- Previously retransmitted holes may have to be retransmitted on a timeout
 \[\Rightarrow\] SACK can hurt under extreme congestion.
Guaranteed Frame Rate (GFR)

- UBR with minimum cell rate (MCR)
 ⇒ UBR+
- Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have CLP =0 or CLP =1
 - All frames below MCR are given CLP =0 service.
 All frames above MCR are given best effort (CLP =1) service.
Guaranteed Rate Service

- **Guaranteed Rate (GR):** Reserve a small fraction of bandwidth for UBR class.

<table>
<thead>
<tr>
<th>GR</th>
<th>GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>per-class reservation</td>
<td>per-VC reservation</td>
</tr>
<tr>
<td>per-class scheduling</td>
<td>per-VC accounting/scheduling</td>
</tr>
<tr>
<td>No new signaling</td>
<td>Need new signaling</td>
</tr>
<tr>
<td>Can be done now</td>
<td>In TM4+</td>
</tr>
</tbody>
</table>
Guaranteed Rate: Results

- Guaranteed rate is helpful in WANs.
- For WANs, the effect of reserving 10% bandwidth for UBR is more than that obtained by EPD, SD, or FBA
- For LANs, guaranteed rate is not so helpful. Drop policies are more important.
- For Satellites, end-system policies seem more important.
Problem in TCP Implementations

- Linear Increase in Segments:
 \[\text{CWND/MSS} = \text{CWND/MSS} + \frac{\text{MSS}}{\text{CWND}} \]

- In Bytes: \[\text{CWND} = \text{CWND} + \text{MSS} \times \frac{\text{MSS}}{\text{CWND}} \]

- All computations are done in integer

- If CWND is large, \(\text{MSS} \times \frac{\text{MSS}}{\text{CWND}} \) is zero and CWND does not change. CWND stays at 512*512 or 256 kB.
Solutions

- **Solution 1**: Increment CWND after N acks (N > 1)
 \[\text{CWND} = \text{CWND} + \frac{N \times \text{MSS} \times \text{MSS}}{\text{CWND}} \]

- **Solution 2**: Use larger MSS on Satellite links such that \(\text{MSS} \times \text{MSS} > \text{CWND}. \text{MSS} \geq \text{Path MTU} \).

- **Solution 3**: Use floating point

- **Recommendation**: Use solution 1. It works for all MSSs.
4 Ways to Improve UBR over Satellites

1. Implement “Selective Acknowledgement” in end-systems
2. Disable “Fast retransmit and recovery” in end-systems
3. Reserve a small fraction of bandwidth for UBR in the switches
4. Fix slow start implementations in end-systems to avoid errors due to integer arithmetic
Summary

- Binary feedback too slow for rate control. Especially for satellites. ER switches provide much better performance than EFCI.

- ABR service required for long-delay or high-speed networks. UBR+ may be OK for LANs but not for long delay paths.
Summary (Cont)

- Implement VS/VD, BECN, RIF=1, TBE=Large to improve ABR over satellites
- Implement SACK, Disable FRR, reserve bandwidth for UBR, and correct TCP implementations to improve UBR over satellites.
Our Contributions and Papers

- All our contributions and papers are available on-line at http://www.cis.ohio-state.edu/~jain/
- See Recent Hot Papers for tutorials.
Thank You!