OpenADN: Mobile Apps on Global Clouds
Using Software Defined Networking

Project Leader: Subharthi Paul
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Invited Talk at IEEE ANTS 2012
December 17, 2012, Bangalore, India

These slides and audio/video recordings are available at:
http://www.cse.wustl.edu/~jain/talks/adn_ant.htm
Overview

Top Networking Trends of 2012
1. Cloud Computing and Mobile Apps
2. Software Defined Networking
3. Centralization of Control Pane
4. Virtualization
Clouds and Mobile Apps

- *Web Services To Drive Future Growth For Amazon* ($2B in 2012, $7B in 2019)
 - Forbes, Aug 12, 2012

- June 29, 2007: Apple announced iPhone ⇒ Birth of Mobile Internet, Mobile Apps
 - Almost all services are now mobile apps: Google, Facebook, Bank of America, …
 - Almost all services need to be global (World is flat)
 - Almost all services use cloud computing

Networks need to support efficient service setup and delivery
Service Center Evolution

1. Single Server

2. Data Center

Load Balancers SSL Off loaders

3. Global Clouds

Global Internet

Need to make the global Internet look like a data center
Google appliances in Tier 3 ISPs
Details of Google WAN are not public
ISPs can not use it: L7 proxies require app msg reassembly

Google Wan

Google L7 Proxy

Network POP

Access ISP

Google Data Center #1

Google Data Center #2

Google L7 Proxy
Our Solution: OpenADN

- Open Application Delivery Networking Platform
 Platform = OpenADN aware clients, servers, switches, and middle-boxes

- Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing ⇒ Global datacenter

![Diagram of OpenADN architecture]
Step 1: Centralization of Control Plane

- Control = Prepare forwarding table
- Data Plane: Forward using the table
- Forwarding table is prepared by a central controller
- Protocol between the controller and the forwarding element: **OpenFlow**
- Centralized control of policies
- Switches are simple. Controller can be complex
 Can use powerful CPUs
- Lots of cheap switches = Good for large datacenters

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_ant.htm ©2012 Raj Jain
Centralized vs. Distributed

- Fully centralized is not scalable.
- Fully distributed is not manageable.
 ⇒ Hierarchy
Step 2: Standardized Abstractions

- The routers are expensive because there is no standard implementation.

<table>
<thead>
<tr>
<th>OSPF</th>
<th>BGP</th>
<th>DHCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Operating System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proprietary fast forwarding hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Similar to Mainframe era computers.

<table>
<thead>
<tr>
<th>Scientific</th>
<th>Business</th>
<th>Batch</th>
<th>1981</th>
<th>MSOffice</th>
<th>OpenOffice</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS360 Operating System</td>
<td>DOS</td>
<td>Windows</td>
<td>LINUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM 360 HW, Storage, …</td>
<td>Intel</td>
<td>AMD</td>
<td>ARM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SDN’s Layered Abstraction

Northbound
- OpenADN
- Net App1
- Network OS1
- Network Virtualization

Southbound
- OpenADN Aware
- OpenFlow
- Forwarding HW

Application Level Control (ASP)
- ASP1
- ASP2
- ASP3

Network Level Control (ISP)
- Net App2
- Network OS2

Virtualization
- Net App3
- Network OS3

SDN Impact

- Why so much industry interest?
 - Commodity hardware
 ⇒ Lots of cheap forwarding engines ⇒ Low cost
 - Programmability ⇒ Customization
 - Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly

- Tsunami of software defined devices:
 - Software defined wireless base stations
 - Software defined optical switches
 - Software defined routers
Industry Growth: Formula for Success

- Paradigm Shifts ⇒ Leadership Shift
- Old market leaders stick to old paradigm and loose
- Mini Computers → PC, Phone → Smart Phone, PC → Smart Phone

Number of Companies

<table>
<thead>
<tr>
<th>Time</th>
<th>New Entrants</th>
<th>Consolidation</th>
<th>Stable Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovators</td>
<td>Startups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⇒ Technology Differentiation</td>
<td>⇒ Price differentiation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Features of OpenADN

1. Edge devices only. Core network can be current TCP/IP based, OpenFlow or future SDN based
2. Coexistence (Backward compatibility): Old on New. New on Old
3. Incremental Deployment
4. Economic Incentive for first adopters
5. Resource owners (ISPs) keep complete control over their resources

Most versions of Ethernet followed these principles. Many versions of IP did not.
Network Virtualization

- OpenADN is per-application virtual global Internet
- Virtualization is the key enabler of cloud computing.
- Compute virtualization, storage virtualization, networking virtualization

Networking: Plumbing
- Past: Virtual Channels, Virtual LANs, VPN
- Each of these can be/need to be virtualized
- Quick review of recent technologies for network virtualization
vNICs

1. Hypervisor vendors: S/W NICs in w Virtual Ethernet Bridge (VEB) (overhead, not ext manageable, not all features)

2. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus

3. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade), 802.1Qbh (new switches)

p = Physical, v = Virtual
Bridge Port Extension

- Multiple physical bridges to make a single virtual bridge with a large number of ports
 ⇒ Easy to manage and configure

- IEEE 802.1BR
Multi-Tenants

- Each tenant needs its own networking domain with its VLAN IDs

1. Virtual Extensible Local Area Networks (VXLAN)
2. Network Virtualization using Generic Routing Encapsulation (NVGRE)
3. Stateless Transport Tunneling Protocol (STT)
 ⇒ Network Virtualization over L3 (NVO3) group in IETF
Multi-Site

- Better to keep VM mobility in a LAN (IP address changes if subnet changes)

- Solution: IP encapsulation
- Transparent Interconnection of Lots of Links (TRILL)
Summary

1. Cloud computing ⇒ Virtualization of computing, storage, and networking
 ⇒ Numerous recent standards related to networking virtualization both in IEEE and IETF

2. Recent Networking Architecture Trends:
 1. Centralization of Control plane
 2. Standardization of networking abstractions
 ⇒ Software Defined Networking (SDN)
 3. Most networking devices will be software defined

3. OpenADN enables delivery of applications using North-bound SDN API