Hi-Speed LANs

Raj Jain
Washington University
Saint Louis, MO 63131
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/cse473-05/
Overview

LAN Topologies
Media Access Control (MAC), CSMA/CD
Ethernet Standards
CSMA/CD Performance
Ethernet vs Fast Ethernet
Full-Duplex Ethernet
IEEE 802 Address Format
LAN Topologies

(a) Bus

(b) Tree

(c) Ring

(d) Star

Tap Flow of data Terminating resistance

Station Repeater

Headend

Central Hub, Switch, or Repeater
Media Access Control (MAC)

<table>
<thead>
<tr>
<th>Bus Topology</th>
<th>Ring Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token Passing</td>
<td>IEEE 802.4 Token bus</td>
</tr>
<tr>
<td>Slotted Access</td>
<td>IEEE 802.6 DQDB</td>
</tr>
<tr>
<td>Contention</td>
<td>IEEE 802.3 CSMACD</td>
</tr>
</tbody>
</table>
CSMA/CD

Aloha at Univ of Hawaii:
Transmit whenever you like
Worst case utilization = \(1/(2e) = 18\%\)

Slotted Aloha: Fixed size transmission slots
Worst case utilization = \(1/e = 37\%\)

CSMA: Carrier Sense Multiple Access
Listen before you transmit

p-Persistent CSMA: If idle, transmit with probability \(p\).
Delay by one time unit with probability \(1-p\)

CSMA/CD: CSMA with Collision Detection
Listen while transmitting. Stop if you hear someone else
IEEE 802.3 CSMA/CD

If the medium is idle, transmit (1-persistent).
If the medium is busy, wait until idle and then transmit immediately.
If a collision is detected while transmitting,
 Transmit a jam signal for one slot
 \((= 51.2 \mu s = 64\text{ byte times})\)
 Wait for a random time and reattempt (up to 16 times)
 Random time \(= \text{Uniform}[0,2^{\min(k,10)}-1]\) slots
Collision detected by monitoring the voltage
High voltage \(\Rightarrow\) two or more transmitters \(\Rightarrow\) Collision
\(\Rightarrow\) Length of the cable is limited to 2 km
CSMA/CD Operation
CSMA/CD Operation

- **t=0**: A starts transmitting
- **t=1**: C starts transmitting
- **t=2**: C detects collision and sends jam
- **t=3**: A detects collision and sends jam
- **t=2+51.2μs**: C stops jam
- **t=3+51.2μs**: A stops jam
- Both A and C sense idle
- **t=3+51.2+9.6μs**: A and C draw random numbers
 - A gets 1 and C gets 0
 - C starts transmitting

Collision window = $2 \times \text{One-way Propagation delay} = 51.2 \ \mu s$

One way delay = $25.6 \ \mu s \Rightarrow \text{Max Distance } < 2.5 \ km$
Original Ethernet Configuration

Fig 12.9
10BASE-T

Hub repeats the signal on all ports
Activity on two or more channels \Rightarrow Collision
Collision presence (CP) transmitted by hub to all stations
Collision window $= 2 \times$ One-way delay between farthest stations
Ethernet Standards

10BASE5: 10 Mb/s over coaxial cable (ThickWire)
10BROAD36: 10 Mb/s over broadband cable, 3600 m max segments
1BASE5: 1 Mb/s over 2 pairs of UTP
10BASE2: 10 Mb/s over thin RG58 coaxial cable (ThinWire), 185 m max segments
10BASE-T: 10 Mb/s over 2 pairs of UTP
10BASE-FL: 10 Mb/s fiber optic point-to-point link
10BASE-FB: 10 Mb/s fiber optic backbone (between repeaters). Also, known as synchronous Ethernet.
Ethernet Standards (Cont)

- **10BASE-FP**: 10 Mb/s fiber optic passive star + segments
- **10BASE-F**: 10BASE-FL, 10BASE-FB, or 10BASE-FP
- **100BASE-T4**: 100 Mb/s over 4 pairs of CAT-3, 4, 5 UTP
- **100BASE-TX**: 100 Mb/s over 2 pairs of CAT-5 UTP or STP
- **100BASE-FX**: 100 Mbps CSMA/CD over 2 optical fiber
Ethernet Standards (Cont)

- 100BASE-X: 100BASE-TX or 100BASE-FX
- 100BASE-T: 100BASE-T4, 100BASE-TX, or 100BASE-FX
- 1000BASE-T: 1 Gbps (Gigabit Ethernet)
- 10GBASE-T: 10 Gbps Ethernet
CSMA/CD Performance

$\alpha = \text{Propagation delay/Frame time}$

$U = \text{Frame Time}/(\text{Propagation delay} + \text{Frame Time}) = 1/(1+\alpha)$

(a) Transmission time = 1; propagation time = $a < 1$

(b) Transmission time = 1; propagation time = $a > 1$
CSMA/CD Performance (Cont)

\[U = \frac{1}{1 + 2\alpha (1-A)/A}, \text{ where } A = (1-1/N)^{N-1} \rightarrow e^{-1} \]

Worst case \(U = 1/(1+3.44a) \) with \(N = \infty \)
Distance-B/W Principle

Efficiency = Max throughput/Media bandwidth
Efficiency is a non-increasing function of α
$\alpha = \text{Propagation delay} / \text{Transmission time}
= (\text{Distance}/\text{Speed of light})/(\text{Transmission size}/\text{Bits/sec})$
$= \text{Distance} \times \text{Bits/sec}/(\text{Speed of light})(\text{Transmission size})$

Bit rate-distance-transmission size tradeoff.
100 Mb/s \Rightarrow Change distance or frame size
Ethernet vs Fast Ethernet

<table>
<thead>
<tr>
<th></th>
<th>Ethernet</th>
<th>Fast Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>10 Mbps</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>MAC</td>
<td>CSMA/CD</td>
<td>CSMA/CD</td>
</tr>
<tr>
<td>Network diameter</td>
<td>2.5 km</td>
<td>205 m</td>
</tr>
<tr>
<td>Topology</td>
<td>Bus, star</td>
<td>Star</td>
</tr>
<tr>
<td>Cable</td>
<td>Coax, UTP, Fiber</td>
<td>UTP, Fiber</td>
</tr>
<tr>
<td>Standard</td>
<td>802.3</td>
<td>802.3u</td>
</tr>
<tr>
<td>Cost</td>
<td>X</td>
<td>2X</td>
</tr>
</tbody>
</table>
Full-Duplex Ethernet

Uses point-to-point links between **TWO** nodes

Full-duplex bi-directional transmission

Transmit any time

Not yet standardized in IEEE 802

Many vendors are shipping switch/bridge/NICs with full duplex

No collisions \Rightarrow 50+ Km on fiber.

Between servers and switches or between switches
IEEE 802 Address Format

48-bit: 1000 0000 : 0000 0001 : 0100 0011
: 0000 0000 : 1000 0000 : 0000 1100
= 80:01:43:00:80:0C

<table>
<thead>
<tr>
<th>Organizationally Unique Identifier (OUI)</th>
<th>24 bits assigned by OUI Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual/Group</td>
<td>Universal/Local</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

Multicast = “To all bridges on this LAN”
Broadcast = “To all stations”
= 111111....111 = FF:FF:FF:FF:FF:FF:FF
Summary

- Ring, Bus, Tree, Star topologies
- CSMA, CD, and p-persistence
- Binary exponential backoff
- 10BASE-T vs 100BASE-T
- Full-duplex Ethernet
- Multicast and unicast Ethernet frames
Reading Assignment