ATM Networks: An Overview

Raj Jain
Professor of Computer and Information Sciences
The Ohio State University
Columbus, OH 43210-1277

These Slides are available on-line at:
http://www.cse.ohio-state.edu/~jain/cis788-99/
Overview

- ATM vs Phone Networks and Data Networks
- ATM Protocol Layers
- Cell Header Format, AALs
- Physical Media
- Traffic Management: ABR, UBR, GFR
ATM Net = Data Net + Phone Net

Combination of Internet method of communication (packet switching) and phone companies’ method (circuit switching)
ATM vs Phone Networks

- Current phone networks are synchronous (periodic). ATM = Asynchronous Transfer Mode
- Phone networks use circuit switching. ATM networks use “Packet” Switching
- In phone networks, all rates are multiple of 8 kbps. With ATM service, you can get any rate. You can vary your rate with time.
- With current phone networks, all high speed circuits are manually setup. ATM allows dialing any speed.
ATM vs Data Networks

- Signaling: Internet Protocol (IP) is connectionless. You cannot reserve bandwidth in advance. ATM is connection-oriented. You declare your needs before using the network.
- PNNI: Path based on quality of service (QoS)
- Switching: In IP, each packet is addressed and processed individually.
- Traffic Management: Loss based in IP. ATM has 1996 traffic management technology. Required for high-speed and variable demands.
- Cells: Fixed size or small size is not important
ATM Interfaces
ATM Interfaces

- **User to Network Interface (UNI):**
 - Public UNI, Private UNI

- **Network to Node Interface (NNI):**
 - Private NNI (P-NNI)
 - Public NNI = Inter-Switching System Interface (ISSI)
 - Intra-LATA ISSI (Regional Bell Operating Co)
 - Inter-LATA ISSI (Inter-exchange Carriers)
 ⇒ Broadband Inter-Carrier Interface (B-ICI)

- **Data Exchange Interface (DXI):**
 Between routers and ATM Digital Service Units (DSU)
Protocol Layers

- The ATM Adaptation Layer
 - How to break messages to cells

- The ATM Layer
 - Transmission/Switching/Reception
 - Congestion Control/Buffer management
 - Cell header generation/removal at source/destination
 - Cell address translation
 - Sequential delivery
Cell Header Format

- GFC = Generic Flow Control
 - (Was used in UNI but not in NNI)
- VPI/VCI = 0/0 ⇒ Idle cell; 0/n ⇒ Signaling
- HEC: \(1 + x + x^2 + x^8\)

<table>
<thead>
<tr>
<th>GFC/VPI</th>
<th>VPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPI</td>
<td>VCI</td>
</tr>
<tr>
<td>VCI</td>
<td>PTI</td>
</tr>
</tbody>
</table>

Header Error Check (HEC)

Payload
Path vs Channels

- 24/28-bit connection identifier
 First 8/12 bits: Virtual Path,
 Last 16 bits: Virtual Circuit

- VP service allows new VC's w/o orders to carriers
VP/VC Assignment/Use

<table>
<thead>
<tr>
<th>Port</th>
<th>VPI/VCI</th>
<th>Out Port</th>
<th>VPI/VCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/37</td>
<td>3</td>
<td>1/35</td>
</tr>
<tr>
<td>1</td>
<td>3/34</td>
<td>4</td>
<td>2/56</td>
</tr>
<tr>
<td>2</td>
<td>5/33</td>
<td>5</td>
<td>4/65</td>
</tr>
<tr>
<td>2</td>
<td>2/56</td>
<td>6</td>
<td>4/76</td>
</tr>
</tbody>
</table>
Original Classes of Traffic

<table>
<thead>
<tr>
<th></th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Sync</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bit Rate</td>
<td>Constant</td>
<td>Variable</td>
<td>Variable</td>
<td>Variable</td>
</tr>
<tr>
<td>Connection-Oriented</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Examples</td>
<td>Circuit Emulation</td>
<td>Comp. Video</td>
<td>Frame Relay</td>
<td>SMDS</td>
</tr>
<tr>
<td>AAL</td>
<td>AAL1</td>
<td>AAL2</td>
<td>AAL3</td>
<td>AAL4</td>
</tr>
</tbody>
</table>

Raj Jain
AAL 5

- Designed for data traffic
- Less overhead bits than AAL 3/4
 Simple and Efficient AAL (SEAL)
- No per cell length field, No per cell CRC

<table>
<thead>
<tr>
<th>User Payload</th>
<th>PAD</th>
<th>Control</th>
<th>Length</th>
<th>CRC-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-64kB</td>
<td>0-47</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

PTI bit indicates last cell

Raj Jain
AAL2

- Ideal for low bit rate voice
- Variable/constant rate voice
- Multiple users per VC
- Compression and Silence suppression
- Idle channel suppression

Cell Header

<table>
<thead>
<tr>
<th>Pkt Hdr</th>
<th>Payload 1</th>
<th>Pkt Hdr</th>
<th>Payload 2</th>
<th>Pkt Hdr</th>
<th>Payload 3</th>
</tr>
</thead>
</table>

Raj Jain
Physical Media

- Multimode Fiber: 100 Mbps using 4b/5b, 155 Mbps SONET STS-3c, 155 Mbps 8b/10b
- Single-mode Fiber: 155 Mbps STS-3c, 622 Mbps
- Plastic Optical Fiber: 155 Mbps
- Shielded Twisted Pair (STP): 155 Mbps 8b/10b
- Coax: 45 Mbps, DS3, 155 Mbps
- Unshielded Twisted Pair (UTP)
 - UTP-3 (phone wire) at 25.6, 51.84, 155 Mbps
 - UTP-5 (Data grade UTP) at 155 Mbps
- DS1, DS3, STS-3c, STM-1, E1, E3, J2, n × T1
Service Categories

- Standby
- Guaranteed
- Confirmed

Joy Riders
Service Categories

- **ABR** (Available bit rate):
 Source follows network feedback.
 Max throughput with minimum loss.

- **UBR** (Unspecified bit rate):
 User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.

- **CBR** (Constant bit rate):
 User declares required rate. Throughput, delay and delay variation guaranteed.

- **VBR** (Variable bit rate):
 Declare avg and max rate.
 - **rt-VBR** (Real-time): Conferencing.
 Max delay guaranteed.
 - **nrt-VBR** (non-real time): Stored video.
ABR vs UBR for TCP/IP

ABR
- Queue in the source
- Pushes congestion to edges
- Good if end-to-end ATM
- Fair
- Good for the provider

UBR
- Queue in the network
- No backpressure
- Same end-to-end or backbone
- Generally unfair
- Simple for user
Guaranteed Frame Rate (GFR)

- UBR with minimum cell rate (MCR) \Rightarrow UBR+
- Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based. All cells of the frame have the same cell loss priority (CLP)
 - All frames below MCR are given CLP = 0 service. All frames above MCR are given best effort (CLP = 1) service.
Summary

- ATM Overview: History, Why and What
- Protocol Layers: AAL, ATM, Physical layers, Cell format
- Interfaces: PNNI, NNI, B-ICI, DXI
- ABR, CBR, VBR, UBR, GFR
ATM : Key References

- See http://www.cis.ohio-state.edu/~jain/refs/atm.refs.htm

