Gigabit Ethernet

Raj Jain

Professor of Computer and Information Sciences
The Ohio State University
Columbus, OH 43210
http://www.cis.ohio-state.edu/~jain/

MBone Instructions

- Handouts for the class are available on-line:
 http://www.cis.ohio-state.edu/~jain/cis788-97/index.html or
 http://www.netlab.ohio-state.edu/~jain/cis788-97/index.html or
 ftp://netlab.ohio-state.edu/pub/jain/cis788-97/

- The schedule keeps changing. Please always check current schedule at:
 http://www.cis.ohio-state.edu/~jain/cis788-97/schedule.html
Instructions (Cont)

- Please email your positive and negative feedback about the quality of the reception as well as the content with a subject field of “Feedback” to mbone@netlab.ohio-state.edu.
- If you are not able to receive the program due to some technical difficulties, please email “Feedback” to mbone@netlab.ohio-state.edu.
- Please email technical questions with the subject field “Question” to mbone@netlab.ohio-state.edu. We will try to answer selected questions live.

Overview

- Current design goals
- PHY Issues
- MAC Issues
- Schedule

Since the Gigabit Ethernet standard is still in a draft stage, some statements made here may change.
Gigabit Ethernet

- Being standardized by 802.3z
- Project approved by IEEE in June 1996
- 802.3 meets every three months ⇒ Too slow
 ⇒ Gigabit Ethernet Alliance (GEA) formed. It meets every two weeks.
- Decisions made at GEA are formalized at 802.3 High-Speed Study Group (HSSG)
- Based on Fiber Channel PHY
- Shared (half-duplex) and full-duplex version
- Gigabit 802.12 and 802.3 to have the same PHY

How Much is a Gbps?

- 622,000,000 bps = OC-12
- 800,000,000 bps (100 MBps Fiber Channel)
- 1,000,000,000 bps
- 1,073,741,800 bps = 2^{30} bps (2^{10} = 1024 = 1k)
- 1,244,000,000 bps = OC-24
- 800 Mbps ⇒ Fiber Channel PHY
 ⇒ Shorter time to market
- Decision: 1,000,000,000 bps ⇒ 1.25 Gbaud PHY
- Not multiple speed ⇒ Sub-gigabit Ethernet rejected
- 1000Base-X
Physical Media

- Unshielded Twisted Pair (UTP-5): 4-pairs
- Shielded Twisted Pair (STP)
- Multimode Fiber: 50 µm and 62.5 µm
 - Use CD lasers
- Single-Mode Fiber
- Bit Error Rate better than 10^{-12}

How Far Should It Go?

- Full-Duplex:
 - Fiber Channel: 300 m on 62.5 µm at 800 Mbps \Rightarrow 230 m at 1000 Mbps
 - Decision: 500 m at 1000 Mbps \Rightarrow Minor changes to FC PHY
- Shared:
 - CSMA/CD without any changes \Rightarrow 20 m at 1 Gb/s (Too small)
 - Decision: 200 m shared \Rightarrow Minor changes to 802.3 MAC
Gigabit Ethernet Objectives

- 1000 Mb/s MAC
- 802.3 Ethernet Frame format
- Meet all 802 requirements except possibly Hamming distance
- Preserve min and max frame size of 802.3
- Full and half-duplex operation
- Support star-wired topologies
- Use CSMA/CD with at least 1 repeater

- Support Fiber and, if possible, copper
- At least 500 m over multimode fiber
- At least 25 m over copper
 - Wiring-closet or data center backbone
 - 100 m desirable
- At least 2 km on single mode fiber
- Collision domain diameter of 200 m
- Accommodate 802.3x flow control
- Price: 2 or 3 times fast Ethernet ports and NICs
PHY Issues

- **Fiber Channel PHY:**

 100 MBps = 800 Mbps

 ⇒ 1.063 GBaud using 8b10b

- **Changes to get 500 m on 62.5-μm multimode fiber**

 - Modest decrease in rise and fall times of the transceivers

<table>
<thead>
<tr>
<th>Time</th>
<th>Relative Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
</tbody>
</table>

- **Symbol Codes for Specific Signals:** Jam, End-of-packet, beginning of packet

- **PHY-based flow Control:** No.

 Use the XOFF flow control of 802.3x
850 nm vs 1300 nm lasers

- 850 nm used in 10Base-F
 - Cannot go full distance with 62.5-µm fiber
 - 500 m with 50-µm fiber
 - 250 m with 62.5-µm fiber
- 1300 nm used in FDDI but more expensive
 - Higher eye safety limits
 - Better Reliability
 - Start with 550 m on 62.5-µm fiber
 - Could be improved to 2 km on 62.5-µm fiber
 ⇒ Needed for campus backbone

Media Access Control

Issues

- Carrier Extension
- Frame Bursting
- Buffered Distributor
Carrier Extension

- Frame 1
- Extension
- Frame 2
- Frame n

- 512 Bytes
- Frame Burst

- Don’t give up the channel after every frame
- After the slot time, continue transmitting additional frames (with minimum inter-frame gap)
- Interframe gaps are filled with extension bits
- No new frame transmissions after 8192 bytes
- Three times more throughput for small frames

- 10 Mbps at 2.5 km ⇒ Slot time = 64 bytes
- 1 Gbps at 200 m ⇒ Slot time = 512 bytes
- Continue transmitting control symbols. Collision window includes the control symbols
- Control symbols are discarded at the destination
- Net throughput for small frames is only marginally better than 100 Mbps

Frame Bursting

- Extension bits

- 512 Bytes
Buffered Distributor

- All incoming frames are buffered in FIFOs
- CSMA/CD arbitration inside the box to transfer frames from an incoming FIFO to all outgoing FIFOs
- Previous slides were half-duplex. With buffered distributor all links are full-duplex with frame-based flow control
- Link length limited by physical considerations only

GMII

- Gigabit Media Independent Interface
- MII between MAC and PHY
- Allows any PHY to be used with a given MAC ⇒ Allows fiber channel phy to be used with CSMA/CD MAC and TX
- Allows both full-duplex and half-duplex modes
Schedule

- November 1996: Proposal cutoff
- January 1997: First draft
- March 1997: Second draft
- July 1997: Working Group Ballot
- March 1998: Approval

Status

- On Schedule
- First draft reviewed in January 97
- Third draft was issued in July’97
- 1000Base-X: Gigabit Ethernet based on Fiber Channel Phy
- Phy modified for 1000 Mbps operation
- Phy modified for ISO 11801 standard for premises cabling ⇒ 550 m intra-building backbone runs
 ⇒ 1300-nm lasers on 62.5-μm multimode fiber
 850-nm lasers on 62.5-μm fiber ok for 300 m
1000Base-X

- 1000Base-LX: 1300-nm laser transceivers
 - 2 to 550 m on 62.5-μm or 50-μm multimode, 2 to 3000 m on 10-μm single-mode
- 1000Base-SX: 850-nm laser transceivers
 - 2 to 300 m on 62.5-μm, 2 to 550 m on 50-μm. Both multimode.
- 1000Base-CX: Short-haul copper jumpers
 - 25 m 2-pair shielded twinax cable in a single room or rack.
 - Uses 8b/10b coding ⇒ 1.25 Gbps line rate

1000Base-T

- 100 m on 4-pair Cat-5 UTP
 - Network diameter of 200 m
 - Requires new coding schemes
 - Under development.
 - New PAR approved in March 1997
 - 802.3ab task force
Summary

- Ethernet will run at 1000 Mbps
- Will compete with ATM for campus backbone and desktop
- Both shared and full-duplex links
- Fully compatible with current Ethernet

References

- For a detailed list of references, see http://www.cis.ohio-state.edu/~jain/refs/gbeRefs.htm
References (Cont)

- Email Reflector:
 - stds-802-3-hssg@mail.ieee.org
 - To join send email to majordomo@mail.ieee.org
 - subscribe stds-802-3-hssg@mail.ieee.org <your email address>

- FTP Site:
 - ftp://stdsbbs.ieee.org/pub/802_main/802.3/gigabit

- Gigabit Ethernet Consortium
 - http://www.gigabit-ethernet.org

Gigabit Ethernet Products

- **Shipping:** Accclaim Communications, Cabletron, NBase

- **Announced:** 3Com, Alteon Networks, Foundry Networks, Packet Engines, XLNT Designs, Xylan, HP

- **Planning:** Bay Networks, Cisco, Compaq, Digital, FORE, Extreme Networks, IBM, Intel, Ipsilon, Madge Networks, Neo Networks, Plaintree, Prominet, Rapid City, Sun, YAGO Systems

- Ref: Network World, March 17, 1997
Current Schedule

7/17/97 Priority and Multicasting on LANs
7/22/97 No Class
7/24/97 Virtual LANs
7/29/97 Gigabit Ethernet

7/31/97 Quiz 2 (No MBone transmission)

8/5/97 Residential broadband: Cable Modems, xDSL
8/7/97 Multimedia: Compression Standards
8/12/97 Multimedia over IP: RSVP, RTP
8/14/97 Wireless LANs and WANs

8/19/97 Quiz 3 (No MBone transmission)

Credits

This MBone transmission was made possible by:

- Mark Fullmer, OSU/UTS
- Mike Iverson, OSU/UTS
- Mike Douglas, OSU/UTS
- Jayaraman Iyer, OSU/CIS
- Sohail Munir, OSU/CIS