Overview

- History
- Interfaces and protocol layers
- Reference points
- Addressing
Integrated Digital Networks

- Integrated \Rightarrow Both transmission and Switching
- Access was still analog

(a) Nonintegrated

(b) Integrated
Int. Service Digital Network

- Past: IDN = Integrated Digital Network
 ⇒ Standardized digital techniques for switching and transmission (T1 etc)
- 1980: ISDN ⇒ Integrated access to all services
 ⇒ Digital end-to-end (Digital subscriber loop)
- One set of interfaces for all services at multiple speeds
- Supports both circuit switching and packet switching
- Out-of-band signaling. Sophisticated network management and maintenance using Signaling System 7 (SS7)
- Layered protocol architecture
History

- 1968: Study Group D set by CCITT to study digital voice
- 1972: G.702 Integrated digital switching and transmission (IDN) concept
- 1976: Digital switching and signaling (SS7) spec
- 1980: G.705 - One page recommendation on ISDN
- 1992: Additional revisions
ISDN Channels

- B: 64 kbps for data or voice
- D: 16 or 64 kbps for signaling or packet switched data
- H: 384 kbps (H0), 1536 kbps (H11), 1920 kbps (H12)
ISDN Access Interfaces

- **Basic Rate Interface (BRI):**
 \[2B + D = 2 \times 64 + 16 \]
 \[= 144 \text{ kbps} \text{ (192 kbps total)} \]

- **Primary Rate Interface (PRI):** For LANs or PBX
 - 23 B + D = 23 × 64 + 64 = 1.536 Mbps ≈ T1
 - 30 B + D = 30 × 64 + 64 = 1.984 Mbps = 5H0+D
 = E1- 64 kbps Framing+mgmt
Other PRI Interfaces

- **PRI H0:**
 - 3H0+D or 4H0 = 1.544 Mbps
 - 5H0+D = 2.048 Mbps

- **PRI H1:**
 - One H11 in 1.544 Mbps
 - One H12 in 2.048 Mbps

- **PRI for Mixture of B and H0:**
 - 0 or 1 D and any combination of B and H0, e.g.,
 3H0+5B+D or 3H0+6B for 1.544 Mbps
Functional Groupings

- Terminal Equipment 1 (TE1): ISDN terminal
- Terminal Equipment 2 (TE2): Non-ISDN terminal, e.g., POT
- Terminal Adapter (TA): Allows non-ISDN devices on ISDN
- Network Termination 1 (NT1): Physical layer device. Separates user premises from phone company. Owned by user in USA. Owned by PTT in many countries.
- Network Termination 2 (NT2): OSI layers 2-3, e.g., PBX, LAN
- Network Termination 1,2 (NT12): NT1 + NT2
Functional Groupings

- **NT1:**
 - Physical and electrical terminal of ISDN at user
 - Isolates the user from the transmission technology of the subscriber loop
 - Line maintenance functions such as loop back testing and monitoring
 - Bit multiplexes various B and D channels
 - Supports multi-drop lines \(\Rightarrow \) Telephone, personal computer, and alarm on one NT1

- **NT2:** Digital PBX, LAN, Terminal controller
 Switching and concentration
ISDN Reference Points

- **Rate (R):** Between Non-ISDN and Terminal Adapter. Uses X or V series recommendations.
- **System (S):** Between ISDN equipment and NT2. Separates user equipment from switching equipment.
- **Terminal (T):** Between NT2 and NT1. Separates network from user.
- **User (U):** U interface not defined by ITU. Defined in North America since NT owned by user.
Protocol Reference Model

- Similar to OSI 7-layer model
- Separate user, control, and management planes
- Control = signaling
- Management = network diagnosis, maintenance, and operation
ISDN Protocols at UNI

<table>
<thead>
<tr>
<th>Layer</th>
<th>Control Signaling</th>
<th>Packet Ckt</th>
<th>Semi Permanent Switched Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>D Channel</td>
<td>B Channel</td>
<td>Raj Jain</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protocol Details

- **Application**: End-to-end user signaling
- **Presentation**: Q.931
- **Session**: LAPD
- **Transport**: I.430 basic or I.431 Primary
- **Network**: X.25 packet
- **Datalink**: I.465/V.120
- **Physical**: LAPB
LAPD

- Link Access Protocol for D Channel
- Similar to HDLC and LAPB
- X.25 packets are transmitted in LAPD frames
- LAPD used for signaling messages
ISDN Services

Six types of services

- Circuit switched calls over a B or H channel
- Semi-permanent connections over a B or H channel
- Packet switched calls over a B or H channel
- Packet switched calls over a D channel
- Frame relay calls over a B or H channel
- Frame relay calls over a D channel
ISDN Addressing

- E.164 designed for ISDN allows up to 15 digits = Superset of E.163 for telephony (12 digits)
- Country code: 1 to 3 digits
- National Destination Code: Provider ID or Area code
- ISDN Address = ISDN number + ISDN subaddress

<table>
<thead>
<tr>
<th>Country Code</th>
<th>National Destination Code</th>
<th>ISDN Subscriber Number</th>
<th>ISDN Subaddress (Max 40 digits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- National ISDN Number
- International ISDN Number (max 15 digits)
- ISDN Address (max 55 digits)
Other Addressing Structures

- **X.121 Data Networks**
 - Zone
 - Country code
 - PDN code
 - Network term. number

 Data Network Identification Code
 - Data country code
 - National number

 - 9
 - Country code
 - National significant number

 E.163
 - 8
 - Telex destination code
 - National telex number

- **ISO 7498**
 - Authority and format identifier
 - Initial domain identifier
 - Domain specific part
Other Addressing (Cont.)

- IDI = Initial domain identifier
- DSP = Domain specific part
- AFI = Authority and format identifier (Six authorities):
 - Four ITU controlled: Packet-switched Data Networks (PSDN), Telex, Packet-switched Telephone Networks (PSTN), ISDN.
 - Two ISO Controlled:
 - ISO geographic domain: Assigned by countries
 - International organization domain, e.g., NATO.
- AFI = 44 ⇒ ISDN in decimal, 45 ⇒ ISDN in binary
Summary

- B, D, and H channels
- BRI and PRI
- NT1, NT2, TE1, TE2, TA
- R, S, T, and U reference points
- Addressing, E.164, ISO
Homework

- Read Section 6.4 of McDysan’s book
 (or Read p 66-74 of Black’s Emerging Technologies 2nd Ed.
 Or
 Read Chapters 4, 5.1-5.5 of Stallings’ ISDN and Broadband ISDN book)

- Submit answers to the following exercise:
 List all of the approved interface structures for the primary rate interface. Don’t forget combinations that include H channels.
 Due: Next Week