Traffic Shaping in ATM Networks

Raj Jain
Professor of Computer and Information Sciences
The Ohio State University
Columbus, OH 43210
jain@acm.org

These slides are available at
http://www.cis.ohio-state.edu/~jain/cis777-00/
Overview

- Leaky bucket
- Generic Cell Rate Algorithm
- GCRA Implementations:
 - Virtual Scheduling Algorithm
 - Leaky bucket algorithm
- Examples
Leaky Bucket

- Provides traffic shaping:
 Input bursty. Output rate controlled.

- Provides traffic policing: Ensure that users are sending traffic within specified limits
 Excess traffic discarded or admitted with CLP = 1
Generic Cell Rate Algorithm: GCRA(I, L)

- I = Increment = Inter-cell Time = Cell size/PCR
- L = Limit ⇒ Leaky bucket of size I + L and rate 1

Theoretical Arrival Time

Last Cell Time

No

OK

Yes

I-L

L

I

Time
GCRA: Virtual Scheduling Algorithm

Cell Arrival at t

TAT < t? Late?

- Yes (late)

- No (early)

TAT > t + L? Too early?

- Yes

- No

TAT = TAT + I

Conforming Cell

Non Conforming Cell

TAT = Theoretical Arrival Time

The Ohio State University

Raj Jain
GCRA: Leaky Bucket Algorithm

F = X - (t - LCT)

F < 0?
Yes

Non-Conforming Cell

No

F > L?
Yes

F = 0

No

X = F + I; LCT = t

Conforming Cell

LCT = Last Compliance Time
X = Bucket contents at LCT
F = Bucket contents now
GCRA Examples

$\delta = \text{cell time} = 2.73 \, \mu s \text{ at } 155 \text{ Mbps}$

- **GCRA(4.5 δ, 0.5 δ):**

 Arrivals

 TAT

 Time

 0 4 8 12 16

- **GCRA(4.5 δ, 7 δ):**

 Arrivals

 TAT

 Time

 0 4 8 12 16
Maximum Burst Size

\[\delta = \text{cell time at Peak Cell Rate (PCR)}, \]
\[I = \text{cell time at Sustained Cell Rate (SCR)}, \] \[L = \text{Limit} \]
\[N = \text{Maximum burst size (MBS)} \]

GCRA(I, L):

\[\text{Arrivals} \]
\[\text{TAT} \]
\[\text{Time} \]

\[0 \quad \delta \quad (N-1)\delta \]
\[0 \quad I \quad (N-1)I \]
\[0 \quad 4 \quad 8 \quad 12 \quad 16 \]

\[(N-1)I - (N-1)\delta < L \]
\[\text{MBS} = N = \text{Int}[1 + L / (I - \delta)] \]
\[L = (\text{MBS} - 1)(I - \delta) \]
Leaky bucket is used to smooth bursty arrivals
GCRA requires increment (inter-cell arrival time) and limit (on earlyness)
Two implementations: Virtual scheduling and leaky bucket
Homework

- Read Section 12.5.2, 22.1, 22.2.1-22.2.3 of McDysan’s book.
 Or Read pages 505-513 of Stallings’ ISDN and Broadband ISDN with Frame Relay and ATM)
- Conduct Lab exercise 1