Chapter 8: Packet Switching

Raj Jain

Overview

- Circuit, datagram, virtual circuit switching
- Routing algorithms
- ARPAnet routing
Datagram vs Virtual Circuit

Connectionless vs connection-oriented

Circuit vs Datagram vs VC

<table>
<thead>
<tr>
<th>Circuit Switching</th>
<th>Datagram</th>
<th>Virtual Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated transmission path</td>
<td>No dedicated path</td>
<td>No dedicated path, Shared path</td>
</tr>
<tr>
<td>Continuous transmission of data</td>
<td>Bursty</td>
<td>Bursty</td>
</tr>
<tr>
<td>No buffering required</td>
<td>Buffers required</td>
<td>Buffers required</td>
</tr>
<tr>
<td>Path fixed at connection setup</td>
<td>Different packets may take different paths</td>
<td>Path fixed at connection setup</td>
</tr>
<tr>
<td>Call setup delay</td>
<td>Queueing delays</td>
<td>Call setup + queueing delays</td>
</tr>
<tr>
<td>Overload blocks new calls</td>
<td>Overload increases queueing delays</td>
<td>Overload may block new calls. May increase queueing delays</td>
</tr>
<tr>
<td>Source and destination have the same speed</td>
<td>Source and destination may have different speed</td>
<td>Source and destination may have different speed</td>
</tr>
<tr>
<td>Bandwidth is reserved. Unused</td>
<td>Bandwidth is dynamically shared among users</td>
<td>Bandwidth is reserved as well as dynamically shared</td>
</tr>
<tr>
<td>bandwidth is wasted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No overhead bits after call setup</td>
<td>Overhead bits in each packet</td>
<td>Less overhead bits in each packet</td>
</tr>
<tr>
<td>Switches keep state</td>
<td>Switches do not keep state</td>
<td>Switches keep state</td>
</tr>
<tr>
<td>No or negligible loss</td>
<td>Loss possible</td>
<td>Loss possible</td>
</tr>
</tbody>
</table>

On link failure Connection continues VC broken

Table 8.1
External vs Internal VC

- External: End-to-end (Transport layer)
- Internal: On the path (Network layer)

<table>
<thead>
<tr>
<th>End-to-end (External)</th>
<th>No connection (Datagram)</th>
<th>Connection (VC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Datagram</td>
<td>Virtual Ckt</td>
</tr>
<tr>
<td></td>
<td>UDP/IP</td>
<td>TCP/IP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYMNET</td>
</tr>
</tbody>
</table>

Routing

Fig 8.8
Rooting or Routing

- **Rooting** is what fans do at football games, what pics do for truffles under oak trees in the Vaucluse, and what nursery workers intent on propagation do to cuttings from plants.

- **Routing** is how one creates a beveled edge on a table top or sends a corps of infantrymen into full scale, disorganized retreat

Ref: Piscitello and Chapin, p413

Routeing or Routing

- Routeing: British
- Routing: American

Since Oxford English Dictionary is much heavier than any other dictionary of American English, British English generally prevails in the documents produced by ISO and CCITT; wherefore, most of the international standards for routing standards use the routeing spelling.

Ref: Piscitello and Chapin, p413
Routing Techniques Elements

- **Performance criterion**: Hops, Distance, Speed, Delay, Cost
- **Decision time**: Packet, session
- **Decision place**: Distributed, centralized, Source
- **Network information source**: None, local, adjacent nodes, nodes along route, all nodes
- **Routing strategy**: Fixed, adaptive, random, flooding
- **Adaptive routing update time**: Continuous, periodic, topology change, major load change

Dijkstra’s Algorithm

- **Goal**: Find the least cost paths from a given node to all other nodes in the network
- **Notation**:
 - d_{ij} = Link cost from i to j if i and j are connected
 - D_n = Total path cost from s to n
 - M = Set of nodes so far for which the least cost path is known
- **Method**:
 - Initialize: $M=\{s\}$, $D_n = d_{sn}$
 - Find node $w \not\in M$, whose D_n is minimum
 - Update D_n
Example

Example (Cont)

<table>
<thead>
<tr>
<th>M</th>
<th>D2</th>
<th>Path</th>
<th>D3</th>
<th>Path</th>
<th>D4</th>
<th>Path</th>
<th>D5</th>
<th>Path</th>
<th>D6</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 8.4a
Dijkstra's routing algorithm

Apply to the following network and compute paths from node 1.

<table>
<thead>
<tr>
<th>M</th>
<th>D2 Path</th>
<th>D3 Path</th>
<th>D4 Path</th>
<th>D5 Path</th>
<th>D6 Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1}</td>
<td>1</td>
<td>1-2</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3-5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,3}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3-5</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,3,5}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3-5</td>
</tr>
<tr>
<td>5</td>
<td>{1,2,3,4,5}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3-5</td>
</tr>
<tr>
<td>6</td>
<td>{1,2,3,4,5,6}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3-5</td>
</tr>
</tbody>
</table>
Bellman-Ford Algorithm

- **Notation:**
 - $h =$ Number of hops being considered
 - $D^{(h)}_n =$ Cost of h-hop path from s to n

- **Method:**
 - Find all nodes 1 hop away
 - Find all nodes 2 hops away
 - Find all nodes 3 hops away

- **Initialize:**
 - $D^{(h)}_n = \infty$ for all $n \neq s$; $D^{(h)}_n = 0$ for all h

- **Find jth node for which $h+1$ hops cost is minimum**
 - $D^{(h+1)}_n = \min_j \{D^{(h)}_j + D_{jn}\}$

Example

![Example Diagram](Fig 8.9b)
Example (Cont)

<table>
<thead>
<tr>
<th>h</th>
<th>(D_{2}^{(h)}) Path</th>
<th>(D_{3}^{(h)}) Path</th>
<th>(D_{4}^{(h)}) Path</th>
<th>(D_{5}^{(h)}) Path</th>
<th>(D_{6}^{(h)}) Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\infty) -</td>
</tr>
<tr>
<td>1</td>
<td>2 1-2</td>
<td>5 1-3</td>
<td>1 1-4</td>
<td>(\infty) -</td>
<td>(\infty) -</td>
</tr>
<tr>
<td>2</td>
<td>2 1-2</td>
<td>4 1-4-3</td>
<td>1 1-4</td>
<td>2 1-4-5</td>
<td>10 1-3-6</td>
</tr>
<tr>
<td>3</td>
<td>2 1-2</td>
<td>3 1-5-4-3</td>
<td>1 1-4</td>
<td>2 1-4-5</td>
<td>4 1-4-5-6</td>
</tr>
<tr>
<td>4</td>
<td>2 1-2</td>
<td>3 1-5-4-3</td>
<td>1 1-4</td>
<td>2 1-4-5</td>
<td>4 1-4-5-6</td>
</tr>
</tbody>
</table>

Table 8.4b

Flooding

- Uses all possible paths
- Uses minimum hop path Used for source routing

Fig 8.11b
ARPAnet Routing (1969-78)

- Features: Cost=Queue length,
- Each node sends a vector of costs (to all nodes) to neighbors. Distance vector
- Each node computes new cost vectors based on the new info using Bellman-Ford algorithm

ARPAnet Routing (1979-86)

- Problem with earlier algorithm: Thrashing (packets went to areas of low queue length rather than the destination), Speed not considered
- Solution: Cost=Measured delay over 10 seconds
- Each node floods a vector of cost to neighbors. Link-state. Converges faster after topology changes.
- Each node computes new cost vectors based on the new info using Dijkstra’s algorithm

![Diagram of ARPAnet Routing (1979-86)](https://example.com/diagram-arpanet-routing-1979-86)
ARPAnet Routing (1987+)

- Problem with 2nd Method: Correlation between delays reported and those experienced later: High in light loads, low during heavy loads ⇒ Oscillations under heavy loads ⇒ Unused capacity at some links, over-utilization of others, More variance in delay more frequent updates More overhead

![Fig 8.15](image1)

Routing Algorithm

- Delay is averanged over 10 s
- Link utilization = \(r = \frac{2(s-t)}{(s-2t)} \)
 where \(t = \) measured delay,
 \(s = \) service time per packet (600 bit times)
- Exponentially weighted average utilization
 \[U(n+1) = \alpha U(n) + (1-\alpha)r(n+1) \]
 \[= 0.5 U(n) + 0.5 r(n+1) \] with \(\alpha = 0.5 \)
- Link cost = \(f_n(U) \)

![Fig 8.16](image2)
Summary

- Connection-oriented and Connectionless
- Routing: Least-cost, Flooding, Adaptive
- Dijkstra’s and Bellman-Ford algorithms
- ARPAnet

Homework

- Exercise 8.4 (in b assume a unidirectional single loop), 8.10, 8.15
- Due: Next class