Multipoint Communication over IP

Raj Jain

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Why Multipoint?
- Multipoint Routing Algorithms
- Multipoint Communication in IP networks
Multipoint Communication

- Can be done at any layer
- Application Layer: Video Conferencing
- Transport Layer: ATM
- Network Layer: IP
- Datalink + Physical Layers: Ethernet
Multipoint Applications

- Audiovisual conferencing
- Distance Learning
- Video on Demand
- Tele-metering
- Distributed interactive games
- Data distribution (usenet, stock prices)
- Server synchronization (DNS/Routing updates)
- Advertising and locating servers
- Communicating to unknown/dynamic group
Application Layer
Multipoint Comm.

- Problems: n times more processing/buffering/bandwidth overhead
- Applications need lower layers’ help in handling unknown addresses
IP Multicast in a Subnet

- 224.0.0/24 are not forwarded by multicast routers.

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.1</td>
<td>All systems on this subnet</td>
</tr>
<tr>
<td>224.0.0.2</td>
<td>All routers on this subnet</td>
</tr>
<tr>
<td>224.0.0.3</td>
<td>Unassigned</td>
</tr>
<tr>
<td>224.0.0.4</td>
<td>DVMRP routers</td>
</tr>
<tr>
<td>224.0.0.5</td>
<td>OSPF All routers</td>
</tr>
<tr>
<td>224.0.0.6</td>
<td>OSPF designated routers</td>
</tr>
<tr>
<td>224.0.0.7</td>
<td>ST routers</td>
</tr>
<tr>
<td>224.0.0.8</td>
<td>ST Hosts</td>
</tr>
<tr>
<td>224.0.0.9</td>
<td>RIP2 Routers</td>
</tr>
<tr>
<td>224.0.0.11</td>
<td>Mobile Agents</td>
</tr>
</tbody>
</table>
Other IP Multicast Addresses

- **224.0.1/24**

<table>
<thead>
<tr>
<th>Address</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.1.1</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>224.0.1.2</td>
<td>SGI-Dogfight</td>
</tr>
<tr>
<td>224.0.1.3</td>
<td>rwhod</td>
</tr>
<tr>
<td>224.0.1.5</td>
<td>Artificial Horizons - Aviator</td>
</tr>
<tr>
<td>224.0.1.20</td>
<td>Any private experiment</td>
</tr>
<tr>
<td>224.0.1.21</td>
<td>DVMRP on MOSPF</td>
</tr>
<tr>
<td>224.0.1.22</td>
<td>SVRLOC</td>
</tr>
<tr>
<td>224.0.1.23</td>
<td>XINGTV</td>
</tr>
<tr>
<td>224.0.1.32</td>
<td>mtrace</td>
</tr>
</tbody>
</table>
IP Multicasts on IEEE 802 LANs

- The low order 23-bits of the IP multicast are added to the IETF’s OUI (0x00-00-5E)

- Example: 239.147.6.99

 \[1110-1111 \ 001-0011 \ 0000-0110 \ 0110-0011 \]

 LAN address:
 \[0000-0001 \ 0000-0000 \ 0101-1110 \ 001-0011 \ 0000-0110 \ 0110-0011 \]
 \[= 0x01-00-5E-13-06-63 \]

- Note the the lsb of the first byte is 1 \(\Rightarrow \) Multicast 802 address
Multipoint Routing Algorithms

- Flooding
- Spanning Trees
- Reverse Path Forwarding
- Flood and Prune
- Steiner Trees
- Center-Based Trees, e.g., core-based trees

Most routing protocol standards are combination of these algorithms.
Flooding

- Used in usenet news
- Forward if first reception of this packet
 \[\Rightarrow\] Need to maintain a list of recently seen packets
- Sometimes the message has a trace of recent path
Spanning Tree

- Used by MAC bridges
- Packet is forwarded on all branches of the tree except the one it came on
- Problem:
 - All packets from all sources follow the same path
 \[\Rightarrow \text{Congestion} \]
Also known as reverse path broadcasting (RPB)

Used initially in MBone

On receipt, note source S and interface I

If “I” belongs to shortest path towards S, forward to all interfaces except I

Otherwise drop the packet
Optionally, check and forward only if the node is on the shortest path to the next node.

Implicit spanning tree. Different tree for different sources.

Problem: Packets flooded to entire network.
Truncated RPB

- All packets are flooded
- All leaf routers will receive the packets
- Leaf routers do not forward the packets to networks where there are no listeners

No listeners at E
Reverse Path Multicasting

No listeners at E

- TRPB with prune and graft = RPM
- Used in MBone since September 1993
- First packet is flooded
- All leaf routers will receive the first packet
RPM (cont)

- If no group member on the subnet, the router sends a "prune"
- If all branches pruned, the intermediate router sends a "prune"
- Periodically, source floods a packet
- Problem: Per group and per source state
Steiner Trees

- Centralized algorithm to compute global optimal spanning tree given all listeners
- Applies only if links are symmetric
- NP Complete \Rightarrow Exponential complexity
 \Rightarrow Not implemented
- Tree varies with the membership \Rightarrow Unstable

(a) F is not a member (b) F joins the group
Center-Based Trees

- Aimed at multiple senders, multiple recipients
- Core-based tree (CBT) is the most popular example
- Choose a center
- Receivers send join messages to the center (routers remember the input interface)
- Senders send packets towards the center until they reach any router on the tree
CBT (Cont)

- Possible to have multiple centers for fault tolerance
- Routers need to remember one interface per group (not per source) ⇒ More scalable than RPF
- Problem: Suboptimal for some sources and some receivers
Multipoint Routing Protocols

- Reverse Path Forwarding (RPF)
- Distance-vector multicast routing protocol (DVMRP): Flood and prune
- Multicast extensions to Open Shortest-Path First Protocol (MOSPF): Source-based trees (RPF)
- Protocol-Independent Multicast - Dense mode (PIM-DM): Flood and prune
- Protocol-Independent Multicast - Sparse mode (PIM-SM): Core-based trees
IGMP

- Internet Group Management Protocol
- Used by hosts to report multicast membership
- Join-IP-Multicast Group (address, interface)
- Leave-IP-Multicast Group (address, interface)
- Ref: RFC 1112 (Version 1)
IGMP Operation

- One "Querier" router per link
- Every 60-90 seconds, querier broadcasts "query" to all-systems (224.0.0.1) with TTL = 1
- After a random delay of 0-10 seconds, hosts respond for each multicast group
- Everyone hears responses and stops the delay timer ⇒ One response per group
- Non-responding groups are timed-out
- New hosts send a "membership report" immediately without waiting for query
IGMP Version 2

- Querier election method
- Messages include "maximum response time"
- "Leave group" message to reduce leave latency
 Sent only if the host that responded to the last query leaves
- Querier then issues a "membership query" with a short response time
- Already implemented. RFC soon.

IGMP Version 3

- Allows hosts to listen to
 - A specified set of hosts sending to a group
 - All but a specified set of hosts sending to a group
- Allows informing the source if no one is listening
- Being designed.
Reverse Path Forwarding (RPF)

- Originally due to Dalal and Metcalfe
 Modified by Steve Deering for IP Multicasting
- Send multicast packets received on SPF interface from
 the source to all other interfaces
- Pruning: Forward on an interface only if there is a
 group member downstream
 ⇒ Routers need to remember whether any listeners
 for all groups and all interfaces
 ⇒ May be excessive overhead for large number of
 groups
DVMRP

- Distance Vector Multicast Routing Protocol
- Multicast extension of RIP
- Broadcast and prune approach
- Periodically, packets are broadcast to all routers
- Routers with no downstream members send prune messages
- Later routers may send graft messages to add members
- Broadcast and prune ⇒ OK for dense group. High overhead for a sparse group.
DVMRP (Cont)

(a) Initial (b) Truncated (c) Pruning (d) Grafting

Topology Broadcast
Hierarchical DVMRP

- Two level hierarchy: Regions and inter-regions
- Boundary routers run DVMRP
- Internal routers run any multicast protocols
MOSPF

- Multicast Open Shortest Path First (Link state)
- Routers build source-based trees
- Tree is pruned based on the group membership
- Packets forwarded only on the interfaces in the pruned tree
- Group membership advertised by a link state record
- Heavy computation
 \[\Rightarrow \] Computation done only if a packet is received
- Expensive for a large number of groups and large number of sources
PIM

- Protocol Independent Multicast
- Unicast routes are imported from existing tables
 ⇒ Use RIP or OSPF tables ⇒ Protocol Independent
- Two modes: Dense and Sparse
- PIM-DM is similar to DVMRP. Uses broadcast and prune.
- PIM-SM is similar to core-based tree. Uses a rendezvous point (RP)
PIM-SM (Cont)

- RP Tree: Reverse shortest path tree rooted at RP
- Routers with listeners join towards RP
- Routers with sources send encapsulated packets to RP
- Routers with listeners and RP may initiate switching to source-specific SPT
Multipoint communication is required for many applications and network operations

Network and transport support

Internet community has developed and experimented with many solutions for multipoint communication
Key References

- See http://www.cse.ohio-state.edu/~jain.refs/mul_refs.htm for further references.
- C. Huitema, "Routing in the Internet," Prentice-Hall, 1995
References (Cont)
