Audiovisual Multimedia Services (AMS)

Raj Jain
Professor of Computer and Information Science
The Ohio State University
Columbus, OH 43210
Jain@CIS.Ohio-State.Edu
http://www.cis.ohio-state.edu/~jain/
Multimedia over ATM

- Service Aspects and Applications (SAA) Group
 - Audiovisual Multimedia Services Phase 1: MPEG2 over ATM

- Key Issues:
 - What Applications?
 - Which Service? CBR or VBR?
 - Transport stream or program stream?
 - Which ATM Adaptation Layer (AAL)?
 - How to divide stream into AAL PDUs?
 - What QoS parameter values to signal?
What Applications?

- MPEG-1 for VCR-quality video/audio
- MPEG-2 for theater-quality video/audio
- Video on Demand ⇒ High-quality ⇒ MPEG-2
Program and Transport Streams

- Program = multiple media with a common time base
- Program stream = one program
- Transport stream = Multiple programs, e.g., cable TV
Streams (Cont)

- Program stream
 - Variable length packets.
 - Designed for lossless local video

- Transport stream
 - Fixed length 188-byte packets
 - Designed to sustain errors/loss in remote transmission
 - Contains program clock reference (PCR) for clock synch
 - Signal scrambling and transmission of encryption keys
 - Facilities to address individual set-top boxes
 - TS is a complete stand-alone transmission system ⇒ Can work without ATM
CBR vs VBR

- VBR encoding saves bandwidth
- VBR bandwidth allocation is more difficult
- Variance also causes more delay jitter
- CBR encoded MPEG-2 transport streams are most common
 ⇒ Use CBR
Which AAL?

- AAL1: Designed for CBR. Provides clock synchronization through synchronous residual timestamps (SRTS)
 - Sequence numbers for lost cell detection
 - Forward error correction option
 - Less overhead than AAL5 for small PDUs
 - Ideal fit: 188 byte MPEG-2 transport packet = 4 cells
 - Common clock required for SRTS not always available
 ⇒ MPEG-2 has its own clock synchronization
- AAL5: Used for signaling and LAN emulation
 Implemented universally ⇒ Low cost
- ATM Forum chose AAL5 for MPEG-2 over ATM
 ETSI chose AAL1 for MPEG-2 over ATM
 ⇒ ITU-T H.222.1 allows both options
MPEG-2 Clock Synchronization

- To maintain audio/video synchronization (inter-media synchronization), video streams contain presentation timestamps
- MPEG-2 Clock = 42-bit counter incremented at 27 MHz
 ⇒ Upper 33 bits increment at 90 kHz
 90 kHz works well for both 25 and 30 frames/s systems.
- The clock at receiver must run at the same rate as the sender
 ⇒ Clock counter values sent periodically with the data
 ⇒ Program Clock Reference (PCR)
- A Phase-lock loop used at the receiver to synchronize
 ⇒ If PCR is larger than local time, speed up local clock and vice versa
AAL PDUs

- MPEG-2 clock synchronization designed for fixed delay pipes
- A few ms variation can affect quality
 ⇒ Packets with PCRs are sent immediately
 ⇒ PCRs occupy the last position in AAL5 PDU
- This is known as 1-N PCR aware scheme

MPEG2 Transport Stream

The Ohio State University
AMS Phase 1: Key Decisions

- First application = Video on demand ⇒ High quality
- CBR encoded MPEG-2 transport stream over AAL5 CBR
- Optionally corrupted AAL5 PDUs are passed on to application with indication
AMS Phase 2

- Video conferencing, distance learning, multimedia desktop
- VBR-encoded MPEG-2 over ATM
- Interworking
AMS Phase 1 focused on VOD
CBR encoded MPEG-2 transport stream over AAL5 CBR
ATM forum selected AAL5. ETSI selected AAL1.
⇒ ITU-T (H.222.1) allows both.
AMS Phase 2 on videoconferencing
Acronyms: MPEG-2 over ATM

- AMS: Audiovisual Multimedia Services
- BCOB-X: Broadband connection-oriented bearer service class X
- PCR: Program clock reference
- PES: Packetized elementary stream
- PTS: Presentation time stamp
- SRTS: Synchronous residual timestamp
- STC: System time clock
- VCO: Voltage controlled oscillator
References: MPEG-2 over ATM

- AMS VOD Spec V1.0
- ITU-T H.310, Broadband audiovisual communication systems and terminals, January 1996.
- H.222.0, Generic coding of moving pictures and associated audio information
- ANSI/TIA xxxx, Multimedia premises reference architecture, draft 1.0, September 1995.
- H.221, Frame structure for a 64 to 1920 kbps channel in audiovisual teleservices, 1995.

