Spline Curves
another view

CSE452A 17

[Slides courtesy of Kavita Bala]
Defining spline curves

- At the most general they are parametric curves

\[S = \{ f(t) \mid t \in [0, N] \} \]

- For splines, \(f(t) \) is piecewise polynomial
 - for this lecture, the discontinuities are at the integers
Defining spline curves

- At the most general they are parametric curves

\[S = \{ f(t) \mid t \in [0, N] \} \]

- For splines, \(f(t) \) is piecewise polynomial
 - for this lecture, the discontinuities are at the integers
Defining spline curves

• At the most general they are parametric curves

\[S = \{ f(t) \mid t \in [0, N] \} \]

• For splines, \(f(t) \) is piecewise polynomial
 – for this lecture, the discontinuities are at the integers
Defining spline curves

- At the most general they are parametric curves

\[S = \{ f(t) \mid t \in [0, N] \} \]

- For splines, \(f(t) \) is piecewise polynomial
 - for this lecture, the discontinuities are at the integers
Defining spline curves

- Generally $f(t)$ is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers
 - e.g., a cubic spline has the following form over $[k, k + 1]$:
 \[
 x(t) = a_x t^3 + b_x t^2 + c_x t + d_x \\
 y(t) = a_y t^3 + b_y t^2 + c_y t + d_y
 \]
 - Coefficients are different for every interval
Coordinate functions

2D spline
Coordinate functions

2D spline

coordinate function $x(t)$
Coordinate functions

2D spline

coordinate function $y(t)$

coordinate function $x(t)$

t 0 1 2

y

2

1

0
Coordinate functions

2D spline

coordinate function $y(t)$

coordinate function $x(t)$
Coordinate functions

2D spline

coordinate function $x(t)$

coordinate function $y(t)$
Coordinate functions

2D spline

coordinate function $x(t)$

coordinate function $y(t)$
Coordinate functions

2D spline

coordinate function \(x(t) \)

coordinate function \(y(t) \)
Coordinate functions

2D spline

coordinate function \(x(t) \)

coordinate function \(y(t) \)
Coordinate functions

2D spline

coordinate function $x(t)$

coordinate function $y(t)$
Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
Spline Segments
Trivial example: piecewise linear

- This spline is just a polygon
 - control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function
 - \(x(t) = at + b \)
 - constraints are values at endpoints
 - \(b = x_0 \); \(a = x_1 - x_0 \)
 - this is linear interpolation
Trivial example: piecewise linear

- Vector formulation

\[x(t) = (x_1 - x_0)t + x_0 \]
\[y(t) = (y_1 - y_0)t + y_0 \]
\[f(t) = (p_1 - p_0)t + p_0 \]

- Matrix formulation

\[f(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} \]
Trivial example: piecewise linear

- Basis function formulation
 - regroup expression by \(p \) rather than \(t \)
 \[
 f(t) = (p_1 - p_0)t + p_0 \\
 = (1 - t)p_0 + tp_1
 \]
 - interpretation in matrix viewpoint
 \[
 f(t) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}
 \]
Trivial example: piecewise linear

- Vector blending formulation: “average of points”
 - blending functions: contribution of each point as t changes

\[b_0(t) = 1 - t \]
\[b_1(t) = t \]
Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)
Hermite splines

- Solve constraints to find coefficients

\[x(t) = at^3 + bt^2 + ct + d \]
\[x'(t) = 3at^2 + 2bt + c \]
\[x(0) = x_0 = d \]
\[x(1) = x_1 = a + b + c + d \]
\[x'(0) = x'_0 = c \]
\[x'(1) = x'_1 = 3a + 2b + c \]

\[d = x_0 \]
\[c = x'_0 \]
\[a = 2x_0 - 2x_1 + x'_0 + x'_1 \]
\[b = -3x_0 + 3x_1 - 2x'_0 - x'_1 \]
Matrix form of spline

\[f(t) = at^3 + bt^2 + ct + d \]

\[
\begin{bmatrix}
 t^3 & t^2 & t & 1
\end{bmatrix}
\begin{bmatrix}
 \times & \times & \times & \times \\
 \times & \times & \times & \times \\
 \times & \times & \times & \times \\
 \times & \times & \times & \times \\
\end{bmatrix}
\begin{bmatrix}
 p_0 \\
 p_1 \\
 p_2 \\
 p_3 \\
\end{bmatrix}
\]

\[f(t) = b_0(t)p_0 + b_1(t)p_1 + b_2(t)p_2 + b_3(t)p_3 \]
Matrix form of spline

\[f(t) = at^3 + bt^2 + ct + d \]

\[
\begin{bmatrix}
t^3 & t^2 & t & 1
\end{bmatrix}
\begin{bmatrix}
x & x & x & x & x
x & x & x & x
x & x & x & x
x & x & x & x
\end{bmatrix}
\begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
p_3 \\
\end{bmatrix}
\]

\[f(t) = b_0(t)p_0 + b_1(t)p_1 + b_2(t)p_2 + b_3(t)p_3 \]
Matrix form of spline

\[f(t) = at^3 + bt^2 + ct + d \]

\[
\begin{bmatrix}
 t^3 & t^2 & t & 1 \\
\end{bmatrix}
\begin{bmatrix}
 \times & \times & \times & \times \\
 \times & \times & \times & \times \\
 \times & \times & \times & \times \\
 \times & \times & \times & \times \\
\end{bmatrix}
\begin{bmatrix}
 p_0 \\
p_1 \\
p_2 \\
p_3 \\
\end{bmatrix}
\]

\[f(t) = b_0(t)p_0 + b_1(t)p_1 + b_2(t)p_2 + b_3(t)p_3 \]
Hermite splines

- Matrix form is much simpler

\[f(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ t_0 \\ t_1 \end{bmatrix} \]

- coefficients = rows
- basis functions = columns
Hermite splines

- Hermite blending functions
Hermite splines

- Hermite basis functions
Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points
Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points
Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points
Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

- note derivative is defined as 3 times offset
 - reason is illustrated by linear case
Hermite to Bézier

\[
\begin{align*}
\mathbf{p}_0 &= \mathbf{q}_0 \\
\mathbf{p}_1 &= \mathbf{q}_3 \\
t_0 &= 3(\mathbf{q}_1 - \mathbf{q}_0) \\
t_1 &= 3(\mathbf{q}_3 - \mathbf{q}_2)
\end{align*}
\]

\[
\begin{bmatrix}
\mathbf{p}_0 \\
\mathbf{p}_1 \\
\mathbf{v}_0 \\
\mathbf{v}_1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 & 0 \\
0 & 0 & -3 & 3 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{q}_0 \\
\mathbf{q}_1 \\
\mathbf{q}_2 \\
\mathbf{q}_3
\end{bmatrix}
\]
\[
\begin{bmatrix}
p_0 \\ p_1 \\ v_0 \\ v_1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3
\end{bmatrix}
\begin{bmatrix}
q_0 \\ q_1 \\ q_2 \\ q_3
\end{bmatrix}
\]

\[
f(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}
\begin{bmatrix}
2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
p_0 \\ p_1 \\ t_0 \\ t_1
\end{bmatrix}
\]

\[
f(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}
\begin{bmatrix}
2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3
\end{bmatrix}
\begin{bmatrix}
q_0 \\ q_1 \\ q_2 \\ q_3
\end{bmatrix}
\]
Bézier matrix

\[f(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \]

- note that these are the Bernstein polynomials

\[b_{n,k}(t) = \binom{n}{k} t^k (1 - t)^{n-k} \]

and that defines Bézier curves for any degree
Bézier basis
Rendering the curve

- Option 1: uniformly sample in \(t \)
- Problem
 - may oversample smooth regions: slow
 - may undersample highly curved regions: faceted rendering
Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
De Casteljau algorithm

- Adaptive subdivision!
Recursive algorithm

void DrawRecBezier (float eps) {
 if Linear (curve, eps)
 DrawLine (curve);
 else
 SubdivideCurve (curve, leftC, rightC);
 DrawRecBezier (leftC, eps);
 DrawRecBezier (rightC, eps);
}
Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line
 - angles in control polygon
Continuity

- Smoothness can be described by degree of continuity
 - zero-order (C^0): position matches from both sides
 - first-order (C^1): tangent matches from both sides
 - second-order (C^2): curvature matches from both sides
Continuity
Continuity

C0 continuous
Continuity

C1 continuous
Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...
Affine Invariance Revisited

Bézier matrix

\[
f(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}
\]
Another interpolating spline
Another interpolating spline
Another interpolating spline

Look at Hermite Spline
Another interpolating spline

\[f(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ t_0 \\ t_1 \end{bmatrix} \]
Another interpolating spline

\[f(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ t_0 \\ t_1 \end{bmatrix} \]

\[p_0 = q_k \]
\[p_1 = q_k + 1 \]
\[v_0 = 0.5(q_{k+1} - q_{k-1}) \]
\[v_1 = 0.5(q_{k+2} - q_K) \]

\[
\begin{bmatrix} p_0 \\ p_1 \\ t_0 \\ t_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -0.5 & 0 & 0.5 & 0 \\ 0 & -0.5 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} q_{k-1} \\ q_k \\ q_{k+1} \\ q_{k+2} \end{bmatrix}
\]
Catmull-Rom Curve

\[
\begin{bmatrix}
 p_0 \\
p_1 \\
t_0 \\
t_1
\end{bmatrix} =
\begin{bmatrix}
t^3 & t^2 & t & 1
\end{bmatrix}
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-0.5 & 0 & 0.5 & 0 \\
0 & -0.5 & 0 & 0.5
\end{bmatrix}
\begin{bmatrix}
 q_{k-1} \\
q_k \\
q_{k+1} \\
q_{k+2}
\end{bmatrix}
\]
Catmull-Rom basis