CSE452 Computer Graphics

Lecture 12: Ray Tracing
Review

- **Local Illumination Model (1-hop reflection only)**
 - Non-physical model: “looks good”
 - Ambient, diffuse and specular components

\[
I = I_{amb} + I_{diff} + I_{spec} \\
= I_A k_a + I_L f_{att} (k_d (N \cdot L) + k_s (R \cdot V)^n)
\]
Review

- Drawing **polygons** using local illumination
 - Visibility culling (z-buffer)
 - Shading (flat, Gouraud, and Phong)
 - Texturing
What are we missing?

Local illumination

Global illumination

By Michael Moran, 2000
Ray Tracing

• A global illumination method
 – Shadows
 – Reflection
 – Refraction

Global illumination
By Michael Moran, 2000
What Is Ray Tracing

- **Goal:** Capture multiple hops of light rays
- **Forward ray casting**
 - Trace the path of each ray coming out of the light source
What Is Ray Tracing

• Goal: Capture multiple hops of light rays

• Forward ray casting
 – Trace the path of each ray coming out of the light source
 • Wasteful. Many rays don’t come to the camera

• Backward ray casting
 – Trace backwards in each view direction
 • Initiate one ray per pixel
 • When the ray hits a surface, calculate color using local illumination (if not in shadow), and spawn new rays along reflective and refractive directions
 • Accumulate color for all rays
Backward Ray Casting

When to stop casting?
1. Ray hits no object
2. Maximum recursion depth
3. Contribution to total illumination too small

\[
I(R_0) = I_{\text{local}}(q_1) + k_r^B I(R_1) + k_t^B I(T_1)
\]

\[
I(R_1) = k_r^A I(R_2)
\]

\[
I(T_1) = k_r^B I(R_3) + k_t^B I(T_3)
\]

k_r: reflective coefficient
k_t: refractive coefficient
Recursive Algorithm

- Main loop

 For each pixel on the screen
 - Form a ray \(L \) from the eye to the pixel
 - \(\text{pixel color} = \text{RayTrace}(L) \)

- Recursive ray-tracer

 \[
 \text{RayTrace}(L) = \begin{cases}
 \text{Find nearest intersection of } L \text{ with all surfaces} \\
 \text{If no intersection found} \\
 \quad \text{Return 0} \\
 \text{Else} \\
 \quad \text{Compute local illum. } I \text{ at intersection} \\
 \quad \text{Cast reflection ray } R, \text{ refraction ray } T \\
 \quad \text{Return } I + k_r \text{ RayTrace}(R) + k_t \text{ RayTrace}(T)
 \end{cases}
 \]

- That’s all!
Forming A Ray

- Locating a pixel (i,j) in world coordinates
 - Viewport: w pixels wide, h pixels high
 - 3D pixel location (on the far plane) after WTC transform:
 \[q_s = \left\{ (i + 0.5) \frac{2}{w} - 1, 1 - (j + 0.5) \frac{2}{h}, -1 \right\} \]
 - 3D pixel location in world coordinates:
 \[q_w = (S_{xyz} S_{xy} R T)^{-1} q_s = T^{-1} R^{-1} S_{xy}^{-1} S_{xyz}^{-1} q_s \]

- Representing the ray (parametric equation)
 - Eye point: P
 \[P + t (q_w - P) \]
Ray-Object Intersection

• General approach
 – Represent ray in *parametric* form
 \[q = P + t d \]
 – Represent surface in *implicit* form
 \[f[q] = 0 \]
 – Substitute ray into surface, and solve for \(t \) (\(P, d \) are known)
 \[f[P + t d] = 0 \]
 – Substitute \(t \) back into ray equation, find intersection point \(q \)
 • Use the *smallest positive* \(t \) (to find nearest intersection point)
Implicit Functions

<table>
<thead>
<tr>
<th>Plane</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$f[q] = (q - g) \cdot n$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cylinder (no cap)</th>
<th>Cone (no cap)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Ray-Plane Intersects

- Plane definition
 \[f[q] = (q - g) \cdot n = 0 \]

- Substituting ray into equation and solve
 \[f[P + td] = (P + td - g) \cdot n = 0 \]
 \[t = \frac{(g - p) \cdot n}{d \cdot n} \]

- Substitute t back and find intersection
 \[q = P + td = P + \frac{(g - p) \cdot n}{d \cdot n} \cdot d \]
Example: Ray-Plane Intersects

- Plane definition

 \[f[q] = (q - g) \cdot n = 0 \]

- Substituting ray into equation and solve

 \[f[P + td] = (P + td - g) \cdot n = 0 \]

 \[t = \frac{(g - p) \cdot n}{d \cdot n} \]

- Substitute \(t \) back and find intersection

 \[q = P + td = P + \frac{(g - p) \cdot n}{d \cdot n} \cdot d \]

- No intersection if

 - \(d \cdot n = 0 \) (Ray parallel to plane) or

 - \(t < 0 \) (behind the ray origin).
Implicit Functions

<table>
<thead>
<tr>
<th></th>
<th>Plane</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f[q]$</td>
<td>$(q - g) \cdot n$</td>
<td>$(q - g)^2 - r^2$</td>
</tr>
<tr>
<td>a.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cylinder (no cap)</th>
<th>Cone (no cap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>![Cylinder (no cap)]</td>
<td>![Cone (no cap)]</td>
</tr>
<tr>
<td>n</td>
<td>![Cylinder (no cap)]</td>
<td>![Cone (no cap)]</td>
</tr>
<tr>
<td>r</td>
<td>![Cylinder (no cap)]</td>
<td>![Cone (no cap)]</td>
</tr>
</tbody>
</table>
Example: Ray-Sphere Intersects

- Sphere definition

\[f[q] = (q - g)^2 - r^2 = 0 \]

- Substituting ray into equation and solve

\[f[P + td] = (P + td - g)^2 - r^2 = At^2 + Bt + C = 0 \]

where \(A = d^2 \), \(B = 2d \cdot (P - g) \), \(C = (P - g)^2 - r^2 \)

\[t_1 = \frac{-B - \sqrt{B^2 - 4AC}}{2A}, \quad t_2 = \frac{-B + \sqrt{B^2 - 4AC}}{2A} \quad (t_1 \leq t_2) \]
Example: Ray-Sphere Intersects

- Sphere definition

\[f[q] = (q - g)^2 - r^2 = 0 \]

- Substituting ray into equation and solve

\[
\begin{align*}
 f[P + td] &= (P + td - g)^2 - r^2 = At^2 + Bt + C = 0 \\
 \text{where } A &= d^2, \ B = 2d \cdot (P - g), \ C = (P - g)^2 - r^2 \\
 t_1 &= \frac{-B - \sqrt{B^2 - 4AC}}{2A}, \ t_2 = \frac{-B + \sqrt{B^2 - 4AC}}{2A} \quad (t_1 \leq t_2)
\end{align*}
\]

- Find Intersection

No intersection if \(B^2 < 4AC \) or \(t_2 < 0 \)

If \(t_1 < 0 \) and \(t_2 > 0 \) : \(q = P + t_2 d \)

If \(t_1 > 0 \) : \(q = P + t_1 d \)
Implicit Functions

<table>
<thead>
<tr>
<th>Plane</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f[q] = (q - g) \cdot n)</td>
<td>(f[q] = (q - g)^2 - r^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cylinder (no cap)</th>
<th>Cone (no cap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v = q - g)</td>
<td>(v = q - g)</td>
</tr>
<tr>
<td>(f[q] = (v - (v \cdot n) n)^2 - r^2)</td>
<td>(f[q] = (v - (v \cdot n) n)^2 - r^2 (v \cdot n)^2)</td>
</tr>
</tbody>
</table>
Constructive Solid Geometry (CSG)
Constructive Solid Geometry (CSG)
Constructive Solid Geometry (CSG)

• How to do ray to CSG intersection?
Constructive Solid Geometry (CSG)

- Call A: cube, B: sphere
- This is A – B
- Find intersections with A
 - Throw away if inside B
- Find intersections with B
 - Throw away if outside A
Constructive Solid Geometry (CSG)

- Boolean results of basic shapes
 - Example: capped cylinder = cylinder ∩ 2 half-spaces
 - Defined by multiple implicit functions

- Side: \(f(q) = ((q - g) - ((q - g) \cdot n) n)^2 - r^2 \)
- Top: \(f_1(q) = (q - g - h n) \cdot n \)
- Bottom: \(f_2(q) = (q - g + h n) \cdot n \)

- Point \(q \) lies inside or on the capped cylinder if
 \[f(q) \leq 0 \land f_1(q) \leq 0 \land f_2(q) \geq 0 \]
Ray Intersection with CSG

- Example: a capped cylinder
 - A point \(q \) lies on the top plane if
 \[f_1[q] = 0, \ f[q] \leq 0 \]
 - A point \(q \) lies on the bottom plane if
 \[f_2[q] = 0, \ f[q] \leq 0 \]
 - A point \(q \) lies on the side if
 \[f[q] = 0, \ f_1[q] \leq 0 \land f_2[q] \geq 0 \]
Constructive Solid Geometry (CSG)

- Example: A capped cone
 - How many implicit functions define this shape?
 - Infinite cone: \(f[q] = (v - (v \cdot n) n)^2 - r^2 (v \cdot n)^2 \), where \(v = q - g \)
 - Top plane: \(f_1[q] = (q - g) \cdot n \)
 - Bottom plane: \(f_2[q] = (q - g - h n) \cdot n \)
 - Point \(q \) lies inside or on the capped cone if
 \[f[p] \leq 0 \land f_1[p] \leq 0 \land f_2[p] \geq 0 \]
 - Point \(q \) lies
 - On the side if: \(f[q] = 0, f_1[q] \leq 0 \land f_2[q] \geq 0 \)
 - On the base if: \(f_2[q] = 0, f[q] \leq 0 \)
Triangles

• First test if ray intersects the plane
 – Triangle vertices g_1, g_2, g_3
 – Plane defined by point g_1 and normal $n = (g_2 - g_1) \times (g_3 - g_2)$

• Next test if the intersection lies in the triangle
 – Let intersection be q
 – If q lies inside, the triangles $qg_i g_{i+1}$ have same orientation as the triangle $g_1 g_2 g_3$

$$n \cdot ((g_{i+1} - g_i) \times (q - g_{i+1})) > 0$$
$$i = 1, 2, 3$$
When Ray Hits A Surface...

• Compute local illumination at the intersection
 — If not occluded, compute diffuse and specular light
 — Add ambient light

• Cast more rays and keep tracing
 — Reflected ray (if the reflection coefficient is not zero)
 — Refracted ray (if the refraction coefficient is not zero)

• Sum up all illumination along traced rays
Computing Illumination

- Local illumination at intersection
 - Ambient reflection: \(I_{amb} = I_A k_a \)

 - Cast a *shadow ray* to each light source
 - A light source is *visible* if the ray is unblocked

- For each visible light source \(i \):
 - Diffuse reflection: \(I_{i,\text{diff}} = I_i f_{\text{att}} k_d (N \cdot L_i) \)
 - Specular reflection: \(I_{i,\text{spec}} = I_i f_{\text{att}} k_s (R_i \cdot V)^n \)

- Together:
 \[
 I_{local} = I_{amb} + \sum_{\text{visible source } i} (I_{i,\text{diff}} + I_{i,\text{spec}})
 \]
Reflection Ray

- Mirrored by the surface normal

\[\mathbf{v} = (\mathbf{L} \cdot \mathbf{n}) \mathbf{n} \]
\[\mathbf{h} = \mathbf{v} - \mathbf{L} \]
\[\mathbf{R} = \mathbf{L} + 2 \mathbf{h} = 2 (\mathbf{L} \cdot \mathbf{n}) \mathbf{n} - \mathbf{L} \]
Refraction Ray

- **Snell’s Law**

 \[
 \frac{\sin(\alpha)}{\sin(\beta)} = \frac{\eta_B}{\eta_A}
 \]

 - \(\eta_A, \eta_B\): refraction index (speed of light in vacuum / speed of light in that material)
 - Compute refracted ray \(T\):

 \[
 T = \frac{\tan(\beta)}{\tan(\alpha)} h - v
 \]
Recursive Algorithm

- Main loop

 For each pixel on the screen

 Form a ray L from the eye to the pixel

 pixel color = RayTrace(L)

- Recursive ray-tracer

 RayTrace(L)

 Find nearest intersection of L with all surfaces

 If no intersection found

 Return 0

 Else

 Compute local illum. I at intersection

 Cast reflection ray R, refraction ray T

 Return $I + k_r \text{ RayTrace}(R) + k_t \text{ RayTrace}(T)$
Examples

- Internet Ray Tracing Competition (irtc.org)

First Place, January-February 2006
Examples

- Internet Ray Tracing Competition (irtc.org)

Third Place, January-February 2006
Speed Up Ray Intersection

- Bounding boxes
 - Using coarse bounding objects for intersection first
 - If no intersection, then ignore the entire object
 - If yes, then intersect with the actual object
 - Types
 - Sphere (ellipsoid)
 - Axes-aligned bounding boxes (AABB)
 - Oriented bounding boxes (OBB)
 - Often hierarchical

An OBB tree
Speed Up Ray Intersection

• Spatial partitioning
 – Divide space up into small cells
 • Record objects in each cell
 • Trace cells along the ray, intersect only with objects in the cells
 – Types
 • Uniform 3D lattice
 • Adaptive lattice (octree, k-d tree)
 • Binary space partitioning (BSP)

An octree