CSE452 Computer Graphics

Lecture 10: Illumination
If there is no light...
What is light?

- Electromagnetic radiation that is visible to the human eye
 - Carried by “photons” but also exhibits wave behaviors
- Properties
 - Speed (constant)
 - Direction (straight)
 - Wavelength (“color”)
What is light?

- Electromagnetic radiation that is visible to the human eye
 - Carried by “photons” but also exhibits wave behaviors
- Properties
 - Speed (constant)
 - Direction (straight)
 - Wavelength (“color”)
 - Amplitude (“intensity”)

![Diagram showing the relationship between wavelength, amplitude, and intensity](image)
Where is purple or pink?

Intensity

Color
Where is purple or pink?
You may not have fully understood.

Important thing is “color is deep.”
How is a surface lit?

• By the (color and intensity of) light that is transmitted from the surface in the direction towards our eye
 – Active: the surface is emitting light (i.e., a light source)
 – Passive: the light originates from somewhere else
Passive Lighting

- When a photon hits a surface it may
 - Get absorbed (turned into heat or other energy)
Passive Lighting

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
Passive Lighting

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
Passive Lighting

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
Passive Lighting

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
 - Scatter
Passive Lighting

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
 - Scatter

- What happens depends on:
 - The color and intensity of light
 - Color and material of surface
 - Orientation of surface with respect to the light source and eye

May change direction, color, and intensity
Illumination (in Computer Graphics)

• Given
 – Light sources, object surfaces and the camera

• Compute
 – Color of each pixel on the screen
 • As intensity of photons that come towards the camera in that viewing direction
Computer Representation

- **Light sources**
 - Directional light (e.g., the sunlight)
 - Emitting photons in one direction
 - Point/Area light (e.g., light bulb)
 - Emitting photons in all directions from a single source
 - Spot light (e.g., a flashlight)
 - Emitting photons from a single source forming a cone

- **Light attenuation**
 - Intensity falls off with distance
Computer Representation

• Surface
 – A geometric surface can be
 • Discrete: consisting of polygons (e.g., triangles), or
 • Continuous: parametric surface (e.g., the sphere)
 – Each surface element is locally represented by
 • The point location
 • The normal vector of the tangent plane
 – Discrete: polygon normal
 – Continuous: first derivatives
Local Illumination
Local Illumination

- Light interaction with one surface
 - Only considers direct reflection of the light from the source
 - Assuming the path between the light source and the surface is unblocked
- Pros: Fast
- Cons: Missing many effects
 - Shadow
 - Refraction
 - Multi-hop reflection
Global Illumination

- Light interaction with all surfaces
 - Reflection/refraction involving multiple surfaces
 - Considers shadows (when the path between the light source and surface is blocked)
 - Complete (*Umbra*) or incomplete (*Penumbra*)

- Pros: Realistic
- Cons: Expensive
Umbra/Penumbra from Sun
Local vs. Global Illumination
If you want to know more...

Light and Color Song by ParrMr
[http://www.youtube.com/watch?v=X1hlQvKbQDE]
Overview

- Local illumination
 - Local lighting model (this lecture)
 - Drawing polygonal models (lecture 11)

- Global illumination
 - Ray tracing (lecture 12, 13)
 - Radiosity (lecture 14)
Local Lighting Model

- Factors in computing reflected light:
 - Geometric configuration (between light source, surface and camera)
 - Light properties (source type, color, attenuation)
 - Surface material (color, shininess, etc.)
 - Others (polarization, fluorescence, phosphorescence, etc.)

- Lighting model: the math that computes reflected light
 - Physical model
 - Computes actual energy transmitted, very expensive
 - Non-physical model (OpenGL)
 - “Close enough”, “looks good”, but fast
Local Lighting Model

- Point light source
- Sum of three terms
 - Diffuse light
 - Diffusive reflection
 - Specular light
 - Highlights
 - Ambient light
 - Global, environment light
Local Lighting Model

\[\text{Diffuse} + \text{Specular} + \text{Ambient} \]
Parameters

- **Geometry**
 - Surface normal (unit vec): \(N = \{ N_x, N_y, N_z \} \)
 - Direction to light source (unit vec): \(L = \{ L_x, L_y, L_z \} \)
 - Distance to light source: \(d_L \)
 - Direction to camera: \(V = \{ V_x, V_y, V_z \} \)
Parameters

• **Geometry**
 - Surface normal (unit vec): \[N = \{ N_x, N_y, N_z \} \]
 - Direction to light source (unit vec): \[L = \{ L_x, L_y, L_z \} \]
 - Distance to light source: \[d_L \]
 - Direction to camera: \[V = \{ V_x, V_y, V_z \} \]

• **Light properties**
 - Diffuse/Specular Light
 \[I_L = \{ I^r_L, I^g_L, I^b_L \} \]
 - Ambient light: \[I_A = \{ I^r_A, I^g_A, I^b_A \} \]
 - Attenuation coefficients: \[c_0, c_1, c_2 \]
Parameters

- **Geometry**
 - Surface normal (unit vec): \(\mathbf{N} = \{N_x, N_y, N_z\} \)
 - Direction to light source (unit vec): \(\mathbf{L} = \{L_x, L_y, L_z\} \)
 - Distance to light source: \(d_L \)
 - Direction to camera: \(\mathbf{V} = \{V_x, V_y, V_z\} \)

- **Light properties**
 - Diffuse/Specular Light
 \(\mathbf{I}_L = \{I^r_L, I^g_L, I^b_L\} \)
 - Ambient light:
 \(\mathbf{I}_A = \{I^r_A, I^g_A, I^b_A\} \)
 - Attenuation coefficients: \(c_0, c_1, c_2 \)

- **Surface material**
 - Diffuse coefficients:
 \(\mathbf{k}_d = \{k^r_d, k^g_d, k^b_d\} \)
 - Specular coefficients:
 \(\mathbf{k}_s = \{k^r_s, k^g_s, k^b_s\} \) and exponent: \(n \)
 - Ambient coefficients:
 \(\mathbf{k}_a = \{k^r_a, k^g_a, k^b_a\} \)
Diffuse Reflection

- Simulates reflection on matte surfaces
 - Independent of view direction
- Lambert’s Cosine Law

\[I_{\text{diff}} = I_L \ k_d \ \cos[\theta] = I_L \ k_d \ (N \cdot L) \]
\[(\theta < \pi / 2, \ \text{or} \ N \cdot L \geq 0) \]
Diffuse Reflection

- Simulates reflection on matte surfaces
 - Independent of view direction
- Lambert’s Cosine Law

\[
I_{\text{diff}} = I_L k_d \cos(\theta) = I_L k_d (N \cdot L)
\]

\((\theta < \pi/2, \text{ or } N \cdot L \geq 0)\)

- Compute for each color component :

\[
I_{\text{diff}}^R = I_L^R k_d^R (N \cdot L)
\]
\[
I_{\text{diff}}^G = I_L^G k_d^G (N \cdot L)
\]
\[
I_{\text{diff}}^B = I_L^B k_d^B (N \cdot L)
\]
Specular Reflection

- Simulates highlight on shiny surfaces
 - Dependent on the viewing direction
- Phong’s approximation

\[
I_{\text{spec}} = I_L k_s \cos[\alpha]^n = I_L k_s (R \cdot V)^n
\]
\[
(N \cdot L \geq 0)
\]
- \(R\): reflected light direction
- \(n\): specular exponent
Specular Reflection

- Simulates highlight on shiny surfaces
 - Dependent on the viewing direction
- Phong’s approximation

\[
I_{\text{spec}} = I_L k_s \cos[\alpha]^n = I_L k_s (R \cdot V)^n \quad (N \cdot L \geq 0)
\]

- \(R\): reflected light direction
- \(n\): specular exponent

Larger \(n\), faster drop-off
Specular Reflection

- Phong’s approximation

\[I_{\text{spec}} = I_L k_s \cos[\alpha]^n = I_L k_s (R \cdot V)^n \]
\[(N \cdot L \geq 0) \]

- Often, \(k_s \) is independent of object
Ambient Reflection

• Simulates global illumination
 – Lights bounced off other objects
• Constant light (a simple hack)

\[I_{\text{amb}} = I_A k_a \]
Light Attenuation

- Simulates decrease of light energy over distance

 \[I_L \leftarrow f_{\text{att}} I_L \]

 - Does not affect ambient light

- Inverse square law of energy fall-off

 \[f_{\text{att}} = \frac{1}{d_L^2} \]

- In practice

 \[f_{\text{att}} = \frac{1}{c_0 + c_1 d_L + c_2 d_L^2} \]
Putting Together

- Local (OpenGL) lighting model

\[I = I_{amb} + I_{diff} + I_{spec} \]
\[= I_A k_a + I_L f_{att} (k_d (N \cdot L) + k_s (R \cdot V)^n) \]

- Compute for each color component
Example: Varying Parameter
Example: Varying Parameter
Example: Varying Parameter

- **Ambient Strength:**
 - AmbientStrength = 0
 - AmbientStrength = 0.15
 - AmbientStrength = 0.25
 - AmbientStrength = 0.75

- **Specular Strength:**
 - SpecularStrength = 0

- **Diffuse Strength:**
 - DiffuseStrength = 0.5
 - DiffuseStrength = 1.0
 - DiffuseStrength = 2.0

- **Specular Exponent:**
 - Specular Exponent = 1
 - Specular Exponent = 10
 - Specular Exponent = 100
Example: Attenuation

No attenuation:

Linear attenuation:

Quadratic attenuation: