CSE452 Computer Graphics

Lecture 4: Points, Vectors and Shapes
Points and Vectors

• Same representation
 \[(x, y) \begin{bmatrix} (x, y, z) \text{ in 3D} \end{bmatrix}\]

• Different meaning:
 – Point: a fixed **location** (relative to \(0,0\) or \(0,0,0\))
 • Coordinates change as location changes
 – Vector: a **direction** and **length**
 • Coordinates do not change as location changes
Points and Vectors

- Same representation

 \((x, y)\) \[\begin{pmatrix} x \ y \ z \end{pmatrix}\text{ in 3D}\]

- Different meaning:

 - Point: a fixed location (relative to \(\{0,0\}\) or \(\{0,0,0\}\))
 - Coordinates change as location changes

 - Vector: a direction and length
 - Coordinates do not change as location changes
Point Operations

- **Subtraction**
 - Result is a vector

- **Addition with a vector**
 - Result is a point
Point Operations

• Subtraction
 – Result is a vector
 \[\vec{P_2} - \vec{P_1} = \vec{v} = (P_{2x} - P_{1x}, P_{2y} - P_{1y}) \]

• Addition with a vector
 – Result is a point
 \[\vec{P_1} + \vec{v} = \vec{P_2} = (P_{1x} + v_x, P_{1y} + v_y) \]
Point Operations

• Addition with a vector
 – Resulting location does not change with the origin

\[
\begin{align*}
 p + v &= (x_1 + x_2, y_1 + y_2) \\
 p &= (x_1, y_1) \\
 v &= (x_2, y_2)
\end{align*}
\]
Point Operations

• Addition with a vector
 – Resulting location does not change with the origin
Point Operations

• Can two points add?

\[p_1 + p_2 = (x_1 + x_2, y_1 + y_2) \]
Point Operations

- Can two points add?
 - In general, **no**: result is dependent on where the origin is
 - But there are exceptions; will discuss later

\[
\begin{align*}
\text{p}_1 + \text{p}_2 & = (x_1 + x_2 + 2a, y_1 + y_2 + 2b) \\
\text{p}_1 & = (x_1 + a, y_1 + b) \\
\text{p}_2 & = (x_2, y_2)
\end{align*}
\]
Vector Operations

- **Addition/Subtraction**
 - Result is a **vector**
 \[\mathbf{u}_1 + \mathbf{u}_2 \]

- **Scaling by a scalar**
 - Result is a **vector**
 \[s \times \mathbf{u} \]

- **Magnitude**
 - Result is a **scalar**
 \[|\mathbf{u}| = \sqrt{u_x^2 + u_y^2} \]
 - A **unit vector** \(|\mathbf{u}| = 1 \)
 - To make a **unit vector** \(\frac{\mathbf{u}}{|\mathbf{u}|} \) (normalization)
Vector Operations

• Dot product
 – Result is a scalar
 \[\mathbf{v}_1 \cdot \mathbf{v}_2 = ||\mathbf{v}_1|| ||\mathbf{v}_2|| \cos \theta \]
 – In coordinates (simple!)
 • 2D: \[\mathbf{v}_1 \cdot \mathbf{v}_2 = v_{1x}v_{2x} + v_{1y}v_{2y} \]
 • 3D: \[\mathbf{v}_1 \cdot \mathbf{v}_2 = v_{1x}v_{2x} + v_{1y}v_{2y} + v_{1z}v_{2z} \]
 • Matrix product between a row and a column vector
Vector Operations

• Uses of dot products
 – **Angle** between vectors:
 • Orthogonal:
 – **Projected length** of \(\mathbf{v}_1 \) onto \(\mathbf{v}_2 \):

 \[
 h = \mathbf{v}_1 \times \mathbf{v}_2
 \]

 if \(\mathbf{v}_2 \) is a unit vector
Vector Operations

- **Uses of dot products**
 - **Angle** between vectors:
 \[
 a = \arccos \left(\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1||\mathbf{v}_2|} \right)
 \]
 - **Orthogonal**:
 \[
 \mathbf{v}_1 \times \mathbf{v}_2 = 0
 \]
 - **Projected length** of \(\mathbf{v}_1\) onto \(\mathbf{v}_2\):
 if \(\mathbf{v}_2\) is a unit vector
 \[
 h = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_2|} = \mathbf{v}_1 \cdot \mathbf{v}_2
 \]
Vector Operations

• Cross product (in 3D)
 – Result is another 3D vector
 • Direction: Normal to the plane where both vectors lie (right-hand rule)
 • Magnitude: \[|\mathbf{v}_1 \times \mathbf{v}_2| = |\mathbf{v}_1| |\mathbf{v}_2| \sin \theta \]
 – In coordinates:
 • Determinant of a matrix:
 \[
 \begin{vmatrix}
 \mathbf{i} & \mathbf{j} & \mathbf{k} \\
 \mathbf{v}_1 \\
 \mathbf{v}_2 \\
 \end{vmatrix}
 \]
 \[
 \mathbf{v}_1 \times \mathbf{v}_2 =
 (v_{1y}v_{2z} - v_{1z}v_{2y}, v_{1z}v_{2x} - v_{1x}v_{2z}, v_{1x}v_{2y} - v_{1y}v_{2x})v_1
 \]
Vector Operations

• Uses of cross products
 – Getting the normal vector of the plane
 • E.g., the normal of a triangle formed by $\mathbf{v}_1 \times \mathbf{v}_2$
 – Computing area of the triangle formed by $\mathbf{v}_1 \times \mathbf{v}_2$
 \[
 \text{Area} = \frac{|\mathbf{v}_1 \times \mathbf{v}_2|}{2}
 \]
 • Testing if vectors are parallel:
 \[
 |\mathbf{v}_1 \times \mathbf{v}_2| = 0
 \]
Vector Operations

<table>
<thead>
<tr>
<th></th>
<th>Dot Product</th>
<th>Cross Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributive?</td>
<td>(\mathbf{v} \cdot (\mathbf{v}_1 + \mathbf{v}_2) \neq \mathbf{v}_1 \cdot \mathbf{v}_2 + \mathbf{v}_2 \cdot \mathbf{v}_1)</td>
<td>(\mathbf{v} \times (\mathbf{v}_1 + \mathbf{v}_2) \neq \mathbf{v}_1 \times \mathbf{v}_1 + \mathbf{v}_2 \times \mathbf{v}_2)</td>
</tr>
<tr>
<td>Commutative?</td>
<td>(\mathbf{v} \cdot \mathbf{v}_2 \neq \mathbf{v}_2 \cdot \mathbf{v}_1)</td>
<td>(\mathbf{v}_1 \times \mathbf{v}_2 \neq \mathbf{v}_2 \times \mathbf{v}_1)</td>
</tr>
<tr>
<td>Associative?</td>
<td>(\mathbf{v}_1 \cdot (\mathbf{v}_2 \cdot \mathbf{v}_3) \neq ?)</td>
<td>(\mathbf{v}_1 \times (\mathbf{v}_2 + \mathbf{v}_3) \neq (\mathbf{v}_1 \times \mathbf{v}_2) \times \mathbf{v}_3)</td>
</tr>
</tbody>
</table>
Vector Operations

<table>
<thead>
<tr>
<th></th>
<th>Dot Product</th>
<th>Cross Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributive?</td>
<td>$\mathbf{v} \cdot (\mathbf{v}_1 + \mathbf{v}_2) \neq \mathbf{v}_1 \cdot \mathbf{v}_2 + \mathbf{v}_2 \cdot \mathbf{v}_2$</td>
<td>$\mathbf{v} \times (\mathbf{v}_1 + \mathbf{v}_2) \neq \mathbf{v}_1 \times \mathbf{v}_2 + \mathbf{v}_2 \times \mathbf{v}_2$</td>
</tr>
<tr>
<td>Commutative?</td>
<td>$\mathbf{v} \cdot \mathbf{v}_2 \neq \mathbf{v}_2 \cdot \mathbf{v}_1$</td>
<td>$\mathbf{v}_1 \times \mathbf{v}_2 \neq \mathbf{v}_2 \times \mathbf{v}_1$</td>
</tr>
<tr>
<td>$\mathbf{v}_1 \times \mathbf{v}_2 = -\mathbf{v}_2 \times \mathbf{v}_1$</td>
<td>$\mathbf{v}_1 \times \mathbf{v}_2 \neq \mathbf{v}_2 \times \mathbf{v}_1$</td>
<td></td>
</tr>
<tr>
<td>Associative?</td>
<td>$\mathbf{v}_1 \cdot (\mathbf{v}_2 \cdot \mathbf{v}_3)$ \textit{Not defined}</td>
<td>$\mathbf{v}_1 \times (\mathbf{v}_2 + \mathbf{v}_3) \neq \mathbf{v}_1 \times \mathbf{v}_2 + \mathbf{v}_1 \times \mathbf{v}_3$</td>
</tr>
<tr>
<td>$\mathbf{v}_1 \times (\mathbf{v}_2 + \mathbf{v}_3)$ \textit{Not defined}</td>
<td>$\mathbf{v}_1 \times (\mathbf{v}_2 + \mathbf{v}_3) \neq \mathbf{v}_1 \times \mathbf{v}_2 + \mathbf{v}_1 \times \mathbf{v}_3$</td>
<td></td>
</tr>
</tbody>
</table>
Shapes and Dimensions

• **0-dimensional shape:**

• **1-dimensional shape:**

• **2-dimensional shape:**
Shapes and Dimensions

- **0-dimensional shape: point**
 - No length or area

- **1-dimensional shape: curve**
 - Has non-zero “length”
 - Examples: line (segment), circle (arc), parabola, etc.

- **2-dimensional shape: surface**
 - Has non-zero “area”
 - Examples: filled triangle or quad, filled circle, surface of a cylinder, surface of a sphere, etc.
Tessellation

• Graphics cards are good at drawing tessellated elements
 – E.g., line segments, triangles, etc.
1D Tessellation

• Approximate a 1D curve shape by line segments
 – Define the curve as a function of one parameter
 – Generate samples on the curve at fixed intervals of the parameter
 – Connect successive samples by line segments

\[
\begin{align*}
 f(0) & \quad \text{f(t)} & \quad f(0.1) & \quad f(0.2) \\
 f(0) & \quad f(1) & \quad f(0)
\end{align*}
\]
A line segment:

\[\mathbf{P}(t) = (1 - t) \mathbf{P}_1 + t \mathbf{P}_2 \quad 0 \leq t \leq 1 \]
Can Points Add? Sometimes.

- Linear interpolation (for two points)
 \[P(t) = (1-t)P_1 + tP_2 \quad 0 \leq t \leq 1 \]
 - For any \(t \), location of \(p \) is invariant to origin change
- It is basically a point-and-vector addition:
 \[P(t) = P_1 + t(P_2 - P_1) \]
Can Points Add? Sometimes.

- **Affine combinations (for multiple points)**

 \[P = \sum_{i=1}^{n} t_i P_i \quad \text{where} \quad \sum_{i=1}^{n} t_i = 1 \]

 - For any \(t_i \), location of \(P \) is invariant to origin change

- Again, a point-and-vector addition:

 \[P = P_i + \sum_{i=1}^{n} t_i (P_i - P_i) \]
Parameterizing 1D Shapes

- A line segment:

\[P(t) = (1 - t) P_1 + t P_2 \quad 0 \leq t \leq 1 \]
Parameterizing 1D Shapes

- Circle
 - Centered at origin with radius r

$$P(\alpha) = (r \cos \alpha, r \sin \alpha) \quad 0 \leq \alpha < 2\pi$$
Parameterizing 1D Shapes

- **Ellipse**
 - Centered at origin with axes a, b

 $$p(d) = (a \cos d, b \sin d) \quad 0 \leq d < 2\pi$$
2D Tessellation

• Approximate a 2D surface shape by \textit{triangles}
 – Define the surface as a function of \textit{two parameters}
 – Generate samples at fixed intervals of both parameters
 – Connect samples by triangles
Parameterizing 2D Shapes

- Filled disk
 - Centered at origin with radius r
Parameterizing 2D Shapes

- Filled disk
 - Centered at origin with radius r

$$P(d, \alpha) = (d \cos \alpha, d \sin \alpha)$$

$0 \leq d \leq r$, $0 \leq \alpha < 2\pi$
Parameterizing 2D Shapes

- Filled quad
Parameterizing 2D Shapes

- Filled quad

\[q(u) = (1-u) p_1 + u p_2 \]
\[r(u) = (1-u) p_3 + u p_4 \]
\[p(u,v) = (1-v) q(u) + v r(u) \]

\[0 \leq u \leq 1, \ 0 \leq v \leq 1 \]
Parameterizing 2D Shapes

- Filled triangle
Parameterizing 2D Shapes

- Filled triangle

\[Q(u) = (1-u)P_1 + uP_2 \]

\[P(u,v) = (1-v)Q(u) + vP_3 \]

\[0 \leq u \leq 1, \quad 0 \leq v \leq 1 \]
Parameterizing 2D Shapes

- Outer surface of a cylinder
 - Base centered at origin
 - Radius r, height h
Parameterizing 2D Shapes

• Outer surface of a cylinder
 – Base centered at origin
 – Radius r, height h

\[p(d, \alpha) = \left(r \cos \alpha, r \sin \alpha, d \right) \]

\[0 \leq d \leq h, \quad 0 \leq \alpha < 2\pi \]
Parameterizing 2D Shapes

- **Cone surface**
 - Base centered at origin
 - Radius r, height h
Parameterizing 2D Shapes

- Cone surface
 - Base centered at origin
 - Radius r, height h

$$p(d, \alpha) = (g \cos \alpha, g \sin \alpha, d)$$

$$g = \frac{r(h - d)}{h}$$

$$0 \leq d \leq h, \quad 0 \leq \alpha < 2\pi$$
Parameterizing 2D Shapes

- Sphere surface
 - Centered at origin with radius r
 - Not the best parameterization...
Parameterizing 2D Shapes

- Sphere surface
 - Centered at origin with radius r

 $$P(\alpha, \beta) = (r \cos(\beta) \cos(\alpha), r \cos(\beta) \sin(\alpha), r \sin(\beta))$$

 - Not the best parameterization…